Publications

Preprints

    Journal Papers

    1. K. Falahkheirkhah, K. Yeh, S. Mittal, L. Pfister, and R. Bhargava, “Deep Learning-Based Protocols To Enhance Infrared Imaging Systems,” Chemometrics and Intelligent Laboratory Systems, vol. 217, no. nil, 2021.
      • Abstract
      • Link to Publisher
      • BibTeX

    2. L. Pfister, R. Bhargava, Y. Bresler, and S. Carney, “Composition-Aware Spectroscopic Tomography,” Inverse Problems, 2020.
      • Download
      • Link to Publisher
      • BibTeX

    3. B. Wen, S. Ravishankar, L. Pfister, and Y. Bresler, “Transform Learning for Magnetic Resonance Image Reconstruction: From Model-Based Learning To Building Neural Networks,” IEEE Signal Processing Magazine, vol. 37, no. 1, 2020.
      • Abstract
      • Link to Publisher
      • BibTeX

    4. L. Pfister and Y. Bresler, “Learning Filter Bank Sparsifying Transforms,” IEEE Transactions on Signal Processing, vol. 67, no. 2, 2019.
      • Abstract
      • Download
      • Link to Publisher
      • BibTeX

    5. L. Pfister and Y. Bresler, “Bounding Multivariate Trigonometric Polynomials,” IEEE Transactions on Signal Processing, vol. 67, no. 3, 2018.
      • Abstract
      • Download
      • Link to Publisher
      • BibTeX

    Conference Papers

    1. S. Mittal, A. K. Balla, L. Pfister, C. Stoean, K. Falahkheirkhah, and R. Bhargava, “Tumor Identification and Grading on Histopathology Images Using Deep Learning,” in United States and Canadian Academy of Pathology Annual Meeting, 2019.
      • BibTeX

    2. I. Kang, A. Grant, M. Dinu, J. Jaques, L. Pfister, R. Bhargava, and S. Carney, “Agile optoelectronic fiber sources for hyperspectral chemical sensing from SWIR to LWIR,” in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXIV, 2018.
      • Abstract
      • Link to Publisher
      • BibTeX

    3. B. Wen, Y. Li, L. Pfister, and Y. Bresler, “Joint Adaptive Sparsity and Low-Rankness on the Fly: An Online Tensor Reconstruction Scheme for Video Denoising,” in 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
      • Abstract
      • Download
      • Link to Publisher
      • BibTeX

    4. L. Pfister and Y. Bresler, “Automatic parameter tuning for image denoising with learned sparsifying transforms,” in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017.
      • Abstract
      • Download
      • Slides
      • BibTeX

    5. L. Pfister, Y. Bresler, R. Bhargava, and P. S. Carney, “Inverse Scattering with Chemical Composition Constraints for Spectroscopic Tomography,” in Imaging and Applied Optics, 2016.
      • Abstract
      • Download
      • Link to Publisher
      • BibTeX

    6. L. Pfister and Y. Bresler, “Learning Sparsifying Filter Banks,” in Proc. SPIE Wavelets & Sparsity XVI, 2015, vol. 9597.
      • Abstract
      • Download
      • Slides
      • Link to Publisher
      • BibTeX

    7. L. Pfister and Y. Bresler, “Tomographic reconstruction with adaptive sparsifying transforms,” in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014.
      • Abstract
      • Download
      • Slides
      • Link to Publisher
      • BibTeX

    8. L. Pfister and Y. Bresler, “Model-based iterative tomographic reconstruction with adaptive sparsifying transforms,” in Proc. SPIE Computational Imaging XII, 2014.
      • Abstract
      • Download
      • Slides
      • Link to Publisher
      • BibTeX

    9. L. Pfister and Y. Bresler, “Adaptive Sparsifying Transforms for Iterative Tomographic Reconstruction,” in International Conference on Image Formation in X-Ray Computed Tomography, 2014.
      • Abstract
      • Download
      • Slides
      • Link to Publisher
      • BibTeX

    PhD Thesis

      Masters Thesis

      1. L. Pfister, “Tomographic Reconstruction with Adaptive Sparsifying Transforms,” Master's thesis, University of Illinois at Urbana-Champaign, 2013.
        • Abstract
        • Link to Publisher
        • BibTeX