from matplotlib import pyplot as plt
%matplotlib inline
import sys
sys.path.append('/home/luke/Research/Python/ctst/')
from tomography import *
$$\newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\Rbb}[0]{\mathbb{R}} \newcommand{\Ht}[1]{\mathcal{T}_{\gamma}\left(#1\right)} \DeclareMathOperator*{\prox}{prox} \DeclareMathOperator{\Poi}{Poi} \DeclareMathOperator{\Ct}{\mathcal{\tilde{C}}} \DeclareMathOperator{\suchthat}{such\, that} \DeclareMathOperator{\st}{s.t.} \DeclareMathOperator*{\argmax}{arg\,max} \DeclareMathOperator*{\argmin}{arg\,min} \require{color} \newcommand{\blue}[1]{ {\color{blue}{#1}}} \newcommand{\abs}[1]{\left| #1 \right|} $$
$$\min_x \frac{1}{2} \norm{y - Ax}_W^2 + \lambda J(x)$$
$$\min_x \frac{1}{2} \norm{\blue{y - Ax}}_W^2 + \lambda J(x) $$
$$\min_x \frac{1}{2} \norm{y - Ax}^2_{\blue{W}} + \lambda J(x) $$
$$\min_x \frac{1}{2} \norm{y - Ax}_{W}^2 + \lambda \blue{J(x)} $$
Propose the use of adaptive sparsifying transform regularization
Use the SALSA algorithm to solve a constrained weighted least squares problem
$$\min_x \frac{1}{2} \norm{y - Ax}_W^2 + \lambda J(x)$$
$$ \begin{align*} \min_x & J(x) \\ \st &\norm{y - Ax}_2^2 < \epsilon \end{align*} $$
$$ \begin{align*} \min_x & J(x) \\ \st &\norm{y - Ax}_{\blue{W}}^2 < \epsilon \end{align*} $$
$$
{\small
\begin{align*}
J(x) &= \min_{z, \Phi} \sum_j \norm{\Phi E_j x - z_j}_2^2 + \gamma \norm{z_j}_1 + \alpha( \norm{\Phi}_F^2 - \log{\det \Phi})
\end{align*}
}
$$
$$ {\small \begin{align*} \min_x &\left\{ \min_{z, \Phi} \sum_j \norm{\Phi E_j x - z_j}_2^2 + \gamma \norm{z_j}_1 + \alpha( \norm{\Phi}_F^2 - \log{\det \Phi}) \right\} \\ \st &\norm{y - Ax}_W^2 \leq \epsilon \end{align*} } $$
$$ \begin{align*} \Phi^{k+1} &= \argmin_{\Phi} \sum_j \norm{\Phi E_j x - z_j}_2^2 + \alpha( \norm{\Phi}_F^2 - \log{\det \Phi}) \end{align*} $$
$$ \begin{align*} z_j^{k+1} &= \argmin_{z_j} \norm{\Phi E_j x - z_j}_2^2 + \gamma \norm{z_j}_1 \end{align*} $$
$$ \begin{align*} \mathcal{T}_\lambda(a) = \begin{cases} 0, \quad & \abs{a} \leq \lambda \\ \left(1 - \frac{\lambda}{\abs{a}} \right) a, \quad &\text{otherwise.} \end{cases} \end{align*} $$
$$
\begin{align*}
\min_x \ & \sum_j \norm{\Phi E_j x - z_j}_2^2 \\
\st &\norm{y - Ax}_W^2 \leq \epsilon
\end{align*}
$$
$$ \begin{align*} \min_{x, v} \ & \sum_j \norm{\Phi E_j x - z_j}_2^2\\ \st &\norm{y - v}_W^2 \leq \epsilon\\ &v = Ax \end{align*} $$
$$ \begin{align*} I_{\mathcal{C}}(v) = \begin{cases} 0, \quad & \norm{v - y}_W^2 \leq \epsilon \\ \infty, \quad & \text{otherwise. } \end{cases} \end{align*} $$
$$ \begin{align*} &\min_x J(x) + I_{C}(v) \\ &\st \ v = Ax \end{align*} $$
$$ {\small \begin{align*} \mathcal{L}(x, v, \eta) = &\sum_j \norm{\Phi E_j x - z_j}_2^2 + \frac{\mu}{2} \norm{v - Ax - \eta}_2^2 - \frac{\mu}{2} \norm{\eta}_2^2 \\ & \st \norm{v - y}_W^2 \leq \epsilon \end{align*} } $$
$$ \begin{align*} x^{k+1} &= \argmin_x \sum_j \norm{\Phi E_j x - z_j}_2^2 + \frac{\mu}{2}\norm{v^{k} - \eta^{k} - Ax}_2^2 \\ v^{k+1} &= \argmin_v I_\mathcal{C}(v) + \frac{\mu}{2}\norm{v - (\eta^k + Ax^{k+1})}_2^2 \phantom{\sum_j}\\ \eta^{k+1} &= \eta^{k} - v^{k+1} + Ax^{k+1} \end{align*} $$
Solve: $$ {\small \left(\mu A^* A + \sum_j E_j^* \Phi^* \Phi E_j \right) x^{k+1} = \mu A^* (v^k - \eta^k ) + \sum_j E_j^* \Phi^* z_j } $$
Linear least squares in $x$
$$ \begin{align*} v^{k+1} = \argmin_v &\norm{v - (\eta^k + Ax^{k+1})}_2^2 \\ \st &\norm{v - y}_W^2 \leq \epsilon \end{align*} $$
$$ \begin{align*} I_{\mathcal{\Ct}}(v) = \begin{cases} 0, \quad & \norm{v}_2^2 \leq \epsilon \\ \infty, \quad & \text{otherwise } \end{cases} \end{align*} $$
Rewrite $v$-update as $$ \begin{equation*} \min_\zeta I_{\Ct}(\zeta) + \frac{\mu}{2} \norm{W^{-\frac{1}{2}} \zeta - ( \eta^k + A x^{k+1} - y)}_2^2 \end{equation*} $$
Solve using FISTA proximal gradient algorithm
$$ \eta^{k+1} = \eta^{k} - v^{k+1} + Ax^{k+1} $$
Analytic projections from FORBILD head phantom
GE Lightspeed fan-beam geometry
Intialize $\Phi$ to be separable 2D finite-differencing matrix
$$ \begin{align*} \tag{CLS} \min_x & J(x) \ \st \ \norm{y - Ax}_2^2 < \epsilon \\ \tag {CWLS} \min_x & J(x) \ \st \ \norm{y - Ax}_{\blue{W}}^2 < \epsilon \end{align*} $$
$D/\Phi \text{ Update }$ | $a/z \text{ Update }$ | $\text{Image Update }$ | $\text{Total}$ | |
---|---|---|---|---|
$\text{TV}$ | $0$ | $0$ | $257.7$ | $257.7$ |
$\text{DL}$ | $54.5$ | $20.3$ | $249.1$ | $323.9$ |
$\text{AST}$ | $2.1$ | $0.1$ | $254.4$ | $256.6$ |
$$ \sqrt{w_k} (y_k - [Ax]_k) \sim N(0, 1) $$
$$ \implies \norm{y - Ax}_W^2 \sim \chi_M^2 $$