Automatic Parameter Tuning for Image Denoising with Learned Sparsifying Transforms

> Luke Pfister & Yoram Bresler University of Illinois at Urbana-Champaign

> > ICASSP 2017

1

The Problem

$$y = Ax + e$$

- A is underdetermined or ill-conditioned
 - Must incorporate prior information!
 - Assume sparse representation

Analytic Sparse Representations

- Designed for optimal properties on a mathematical class of signals
- Fast implementation
- Hard to design for high dimensional data

Adaptive Sparse Representations

- Learn a good representation directly from data
- Synthesis sparsity: Dictionary Learning
- Analysis sparsity: Analysis Operator Learning
- Transform sparsity: Transform Learning

Transform Sparsity

- $W \in \mathbb{R}^{M \times K}$: Sparsifying transform
- $Wx \approx \text{sparse}$
- W is left-invertible: $x \approx W^{\dagger} z$

Transform Sparsity

$$z^* = \min_{z} \frac{1}{2} \|Wx - z\|_2^2 + \nu \|z\|_0$$

$$z_i^* = \begin{cases} [Wx]_i \\ 0 \\ \triangleq \psi (Wx) \end{cases}$$

$$|[Wx]_i| \ge \sqrt{\nu}$$
else

Data-Adaptive Models in Practice

Instance Approach

Universal Approach

Training Phase

Universal Approach

Training Reconstruction Phase Phase Transform Image Update Update Sparse Code Sparse Code Update Update

Applications

- State of the art results in...
 - Image denoising
 - Video denoising
 - Inpainting
 - Magnetic Resonance Imaging
 - Computed tomography

Welcome to the Parameter Jungle

- Sparsity level
- Regularization
 - Conditioning, coherence, norm...
- Number of iterations
 - Learning iterations, reconstruction iterations...
- Should parameters change with iterations?

Towards A Partial Solution

- Universal paradigm: pre-learned $W: M \times K$
- Restrict attention to image denoising

•
$$y = x^* + e$$

Sparsifying Transforms for Images

Patch-based Models

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

Patch-based Models

1	2	3	4	5	6	
7	8	9	10	11	12	
13	14	15	16	17	18	
19	20	21	22	23	24	
25	26	27	28	29	30	
31	32	33	34	35	36	

 $R_1 x$

Patch-based Models

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

1	2
2	3
7	8
8	9

 $R_2 x$

Filter bank Sparsifying Transforms

Automatic Parameter Tuning

The Setup

- Noisy signal $y = x^* + e$
- $e \sim \mathcal{N}(0, \sigma^2 I_n)$
- Denoising function: $\hat{x} = F_{\theta}(y)$
- Mean Squared Error: $MSE = n^{-1} ||x^* F_{\theta}(y)||_2^2$

In a perfect world...

$$\hat{x} = \underset{\theta}{\arg\min} \|x^* - F_{\theta}(y)\|_2^2 / n$$

- Next best thing: Stein's Unbiased Risk Estimator (SURE)
- Unbiased estimate of MSE given only y, F_{θ} , and σ

SURELET (Blu, 2007)

• Use a linear combination of elementary denoising functions

•
$$F_{\theta}(y) = \sum_{i,j} c_{i,j} F_{i,j}(y) = \mathbf{Fc}$$

• $F_{i,j}(y) = \mathcal{S}_i \psi_j(\mathcal{W}_i y)$ $i = 1, \dots M$ $j = 1, \dots 5$

• ψ must be differentiable

SURE-BUMP Functions (Simoncelli, 2008)

SURELET

$$\min_{c_{i,j}} \frac{1}{n} \|F_{\theta}(y) - y\|_{2}^{2} + \frac{2\sigma^{2}}{n} \sum_{i,j} c_{i,j} \underbrace{\alpha_{i}^{T} \psi_{j}'(\mathcal{W}_{i}y)}_{v_{ij}} + \sigma^{2}$$

• $\alpha_i = \operatorname{diag} \{ \mathcal{W}_i \mathcal{S}_i \}$

SURELET

$$\min_{\mathbf{c}} \frac{1}{n} \|\mathbf{F}\mathbf{c} - y\|_2^2 + \frac{2\sigma^2}{n} \mathbf{c}^T \mathbf{v} + \sigma^2$$

• $\alpha_i = \operatorname{diag} \{ \mathcal{W}_i \mathcal{S}_i \}$

SURELET Denoising

- 1: Calculate α_i
- 2: $F_{i,j}(y) = S_i \psi_j(\mathcal{W}_i y)$ 3: $v_{i,j} = \alpha_i^T \psi'_j(\mathcal{W}_i y)$ 4: $\mathbf{c} = (\mathbf{F}^T \mathbf{F})^{-1} (\mathbf{F}^T y + \sigma^2 \mathbf{v})$ 5: $\hat{x} = \mathbf{F} \mathbf{c}$

- Main computation: $S_i \phi_j(W_i y)$
- but no parameter tuning!

Other Denoising Approaches

Iterative Patch Denoising (IPD)

• Independent collection of patches $\bar{x}_j = R_j y$

$$\min_{\bar{x}_j, z_j} \frac{1}{2} \| W \bar{x}_j - z_j \|_2^2 + \frac{\lambda}{2} \| R_j y - \bar{x}_j \|_2^2 + \nu \phi(z_j),$$

)

1: repeat

2:
$$z_j^k \leftarrow \psi(W\bar{x}_j^k)$$

3: $\bar{x}_j^k \leftarrow (W^TW + \lambda I)^{-1}(W^Tz_j^k + \lambda R_j y)$

- 4: until Halting condition
- 5: $x = \frac{1}{K} \sum_{j} R_{j}^{T} \bar{x}_{j}^{k}$

Global Patch Denoisng (GPD)

Link patches directly to image

$$\min_{x,z_j} \frac{1}{2} \sum_{j=1} \|WR_j x - z_j\|_2^2 + \frac{\lambda}{2} \|y - x\|_2^2 + \nu \phi(z_j),$$

1: repeat

2:
$$z_j^k \leftarrow \psi \left(WR_j x^k \right)$$

3: $x^k \leftarrow (\sum_j R_j^T W^T WR_j + \lambda I)^{-1} (\sum_j R_j^T W^T z_j^k + \lambda y)$

4: until Halting condition

Experiments

Experiments

- Pre-learned transform
- 8×8 patches, 64 channels
- Compare against
 - SURELET with fixed transform
 - IPD/IGD with oracle information
 - IPD + instance paradigm
- Report mean PSNR (dB) over test set

Experiments

Experiments: Mean PSNR

σ	10	20	30
Input PSNR	28.13	22.11	18.59
BM3D	34.0	30.8	29.0
SURELET-SWT	33.0	29.5	27.4
SURELET-DCT	33.7	30.1	28.1
IGD-DCT	33.7	30.3	28.4
IPD-AST	33.8	30.2	28.2
IGD-LST	33.8	30.3	28.4
SURELET-LST	33.8	30.2	28.2

Conclusions

• SURELET denoising with learned sparsifying transform

- Better than SURELET with analytic transform
- Easier than iterative denoising with learned transform
- Next steps
 - Incorporate into the learning process
 - Extend to non-Gaussian noise and imaging problems

Thanks!

- Blu, T., & Luisier, F., The SURE-LET approach to image denoising. IEEE Transactions on Image Processing 2007
- Raphan, M., & Simoncelli, E., Optimal denoising in redundant representations, IEEE Transactions on Image Processing, 2008
- http://transformlearning.csl.illinois.edu

Patch Thresholding

1:
$$z_j \leftarrow \psi(WR_jy)$$

2: $x \leftarrow \frac{1}{K} \sum_j R_j^T W^{\dagger} z_j$

- Why not use SURELET on patches?
 - Too many parameters!

Full Table

Method	baboon		peppers512			barbara			
BM3D	30.47	26.45	24.40	34.75	32.51	31.01	34.95	31.74	29.78
SURELET-SWT	30.03	25.84	23.80	34.14	31.49	29.72	32.69	28.48	26.17
SURELET-DCT	30.44	26.31	24.22	34.55	31.70	29.91	34.22	30.37	28.18
IGD-DCT	30.40	26.31	24.26	34.57	32.07	30.50	33.98	30.16	27.97
IPD-AST	30.43	26.35	24.22	34.58	31.90	30.13	34.34	30.52	28.27
IGD-LST	30.49	26.40	24.31	34.67	32.25	30.68	33.98	30.00	27.71
SURELET-LST	30.52	26.43	24.31	34.68	31.89	30.07	34.30	30.51	28.24
Method	man		boat		sailboat				
BM3D	33.94	30.56	28.81	33.90	30.84	29.04	32.51	29.52	27.84
SURELET-SWT	33.16	29.75	28.02	33.26	29.89	28.07	32.11	28.89	27.02
SURELET-DCT	33.47	29.92	28.05	33.64	30.24	28.28	32.56	29.26	27.41
IGD-DCT	33.53	30.10	28.33	33.68	30.45	28.61	32.41	29.36	27.66
IPD-AST	33.64	30.00	28.09	33.63	30.24	28.28	32.51	29.26	27.40
IGD-LST	33.77	30.24	28.39	33.76	30.51	28.65	32.48	29.42	27.67
SURELET-LST	33.74	30.16	28.20	33.79	30.38	28.39	32.68	29.36	27.48

Thresholding Functions

$$\psi_j(x) = x \cdot f(\alpha \log(|z| \sigma^{-1} + 1) + \beta - j)$$
$$f(x) = \cos^2\left(\frac{\pi x}{2}\right)$$

 α, β set center of ψ_1, ψ_4 to $\sqrt{3} \|W_{i,:}\|_2$ and $\sqrt{15} \|W_{i,:}\|_2$

Calculating α_i for cyclic convolution

Q: 2D-DFT matrix

$$\alpha_i = \left\| \frac{\left| Qw_i \right|^2}{\sum_{j=1}^M \left| Qw_j \right|^2} \right\|_1 \cdot \mathbf{1}_n$$