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ABSTRACT

A central problem in computed tomography (CT) imaging

is to obtain useful, high-quality images from low-dose mea-

surements. Methods that exploit the sparse representations of

tomographic images have long been known to improve the

quality of reconstructions from low-dose data. Recent work

has shown that sparse representations learned directly from

the data can outperform traditional, fixed representations, but

are prohibitively expensive for practical use in CT. We pro-

pose a new method for tomographic reconstruction from low-

dose data by combining the statistically weighted data fidelity

term with an adaptive sparsifying transform regularizer. This

regularizer can be fit to the data at lower cost than compet-

ing methods. Our algorithm alternates between reconstruct-

ing the image and learning the sparsifying transform. The Al-

ternating Direction Method of Multipliers technique is used

to provide an efficient solution to the statistically weighted

minimization problem. Numerical experiments on data from

clinical CT reconstructions indicate that adaptive sparsifying

transform regularization outperforms synthesis sparsity meth-

ods at speeds rivaling total-variation regularization.

Index Terms— Sparsifying transform learning, Sparse

representations, CT dose reduction, iterative reconstruction

1. INTRODUCTION

A major challenge in computed tomography (CT) is the re-

duction of harmful x-ray dose while maintaining the quality

of reconstructed images. Key to achieving this goal are

advancements in image reconstruction. Unlike the industry-

standard filtered backprojection (FBP) algorithm, iterative

reconstruction algorithms can produce high-quality images

from low-dose data by incorporating detailed models of the

data acquisition process, noise statistics, and the signal being

reconstructed. These algorithms often reconstruct an image

x ∈ R
N from (approximately) photon count data, p ∈ R

M ,

by solving the penalized weighted-least squares problem [1]
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min
x

1

2
‖y −Ax‖2W + λJ(x). (1)

The data vector y ∈ R
M contains the log of measured

photon counts p, and the quantity [Ax]k represents a forward

projection of x along the kth ray. The weighting matrix W is

diagonal with entries wi = exp (−yi), and can be motivated

as a quadratic approximation to the negative log-likelihood of

the image given photon counts. The first term in (1) represents

a statistically weighted fidelity measure between the data y
and the reprojected image Ax.

The regularization functional J : RN → R improves the

conditioning of (1), and encourages solutions that satisfy a

particular signal model. Signal models in which the data is as-

sumed to have a sparse representation have shown enormous

success, and this assumption of sparsity is at the heart of pop-

ular regularizers such as total-variation (TV). These methods

have classically been instances of analysis sparsity, in which

the image becomes sparse when acted on by a fixed linear

transformation called an analysis operator.

Edge-preserving and total-variation regularization have

been shown to be effective for both low-dose and limited

data tomography [2, 3, 4]. These methods generally promote

images that are piecewise constant, and can replace complex

texture by patchy, uniform regions. More sophisticated reg-

ularization using shearlets has been shown to better preserve

complex texture at the expense of performance on uniform,

flat regions [5].

Recent work has shown the promise of adaptive, rather

than fixed, sparse representations. A popular approach is to

assume that small, overlapping patches of the signal x can be

represented as the linear combination of a few columns of a

(possibly overcomplete) dictionary. Several algorithms have

been proposed to fit such a dictionary to a given set of data,

and algorithms that alternate between learning a dictionary

and image reconstruction have been shown to outperform tra-

ditional regularization techniques in both limited-angle [6]

and low-dose [7, 8] tomography.

The past few years have seen an increase in development

of algorithms that adaptively learn analysis operators. Algo-

rithms have been proposed based on modifications of existing

dictionary learning algorithms [9], variable-splitting methods

[?], and manifold methods [10].



However, both synthesis and analysis learning algorithms

suffer from an expensive sparse coding step, which scales

poorly with data size, and as a result may be prohibitively

expensive for practical tomographic reconstruction. An alter-

native approach is to assume that our signal is approximately

sparse when acted on by a linear transformation Φ. In par-

ticular, we assume that our signal satisfies the relationship

Φx = z + e, where z is sparse and called the transform

sparse code, and the residual e is small. This is known as

transform sparsity and can be thought of as a generalization

of the analysis sparsity model by allowing deviation from ex-

act sparsity in the transform domain. Recently, several algo-

rithms [11, 12, 13] have been developed to adapt sparsifying

transforms to data. The permitted deviation from exact trans-

form sparsity results in algorithms that are much faster than

competing synthesis dictionary and analysis operator learning

algorithms.

In this work, we combine the use of statistical reconstruc-

tion techniques with an adaptive sparsifying transform regu-

larizer to produce a computationally efficient algorithm with

state of the art performance for low-dose CT imaging. Nu-

merical experiments are performed using reprojected clinical

images. The results indicate that adaptive sparsifying trans-

form regularization outperforms synthesis sparsity methods at

speeds rivaling total variation regularization.

2. ALGORITHM

Our goal is to reconstruct an image x ∈ R
N from data y ∈

R
M while jointly finding a sparsifying transform Φ ∈ R

k×k

that acts on
√
k ×

√
k patches of x. To allow for variable

sparsity levels in the transform sparse codes, our regularizer

is a modified version of the cost in [11], in which the sparsity

constraint has been relaxed to a penalty term. The overall

problem, corresponding to the learning of Φ and update of

both the image x and transform sparse codes zj , is written

min
x,z,Φ

1

2
‖y −Ax‖2W +

λ

2

∑

j

‖ΦEjx− zj‖22

+ λ
(

γ‖zj‖0 + α(‖Φ‖2F − log detΦ)
)

(P1)

where λ and α are positive scalar parameters and ‖z‖0 is the

ℓ0 quasinorm that counts the number of nonzero elements in

z. The matrix Ej ∈ R
k×N extracts the j-th

√
k ×

√
k vec-

torized patch and removes its mean. As the images arising in

CT applications occupy a finite region and are typically sur-

rounded by a region of zero attenuation, we are free to extract

patches that wrap around the image boundary.

The second term in (P1) penalizes the sparsification error

of patches from the reconstructed image, while the third term

encourages sparsity in the transform sparse codes zj . The

Frobenius norm penalty enforces good scaling of the learned

transform. The negative log determinant penalty acts as a bar-

rier function to ensure that the learned transform is nonsingu-

lar, provided that the algorithm is initialized with a nonsin-

gular starting point. Together, these two penalties ensure that

the transform is full-rank and well-conditioned.

As (P1) is highly nonconvex, we employ an alternating

minimization scheme. When updating Φ, we fix x and the zj
and solve

argmin
Φ

∑

j

1

2
‖ΦEjx− zj‖22 + α(‖Φ‖2F + log detΦ). (2)

The minimization problem (2) can be solved in closed-form

[14], or by using a solver such as nonlinear conjugate gradi-

ent. For fixed Φ and x, (P1) is rewritten as

argmin
z

∑

j

1

2
‖ΦEjx− zj‖22 + γ‖zj‖0. (3)

The solution of (3) is given in closed-form for each zj by set-

ting to zero all entries with magnitude less than
√
γ, an opera-

tion called hard thresholding and written as zj = Tγ (ΦEjx),.
In practice, we alternate between updating Φ and z a few

times before moving to update x. This ensures that Φ is a

good sparsifying transform for the current image x.

We now turn to the update of the image x. For fixed Φ
and z, (P1) reduces to the weighted least-squares problem

min
x

1

2
‖y −Ax‖2W +

λ

2

∑

j

‖ΦEjx− zj‖22. (4)

Iterative methods are required due to the enormous size of A.

However, the large dynamic range in W causes the Hessian

ATWA + λ
∑

j E
T
j Φ

TΦEj to be very poorly conditioned

and many iterations are required. Further, the placement of

W causes the Hessian to be highly shift-variant and prohibits

the use of efficient Fourier preconditioners [15].

To remedy this problem, Ramani & Fessler proposed

the use of the Alternating Direction Method of Multipliers

(ADMM) algorithm to decouple the influence of W and A,

facilitating the use of Fourier preconditioners while also al-

lowing for the efficient use of non-differentiable regularizers

such as total-variation [16].

We employ a variation of this technique to accelerate the

solution of (4). As the regularization term is differentiable,

we only need to split the data fidelity. By not splitting the

regularization term, we eliminate the need to store two addi-

tional auxiliary variables. This memory savings may prove

critical for extending (P1) to 3D tomographic reconstruction.

To to utilize the ADMM approach, we first introduce an

auxiliary variable u and rewrite the unconstrained problem (4)

in the constrained form

min
x,u

1

2
‖y−Ax‖2W +

λ

2

∑

j

‖ΦEjx−zj‖22 s.t. u = Ax. (5)



We next form the augmented Lagrangian function of (5), writ-

ten in “scaled form” [17] as

L(x, u, η) = 1

2
‖u− y‖2W +

λ

2

∑

j

‖ΦEjx− zj‖22

+
µ

2
‖u−Ax− η‖22 −

µ

2
‖η‖2.

(6)

The parameter µ > 0 affects the rate of convergence of the

algorithm but not the overall solution, and the vector η ∈ R
M

is a scaled version of the Lagrange multiplier of the constraint

equation u = Ax. Our goal is now to find a saddle point of

(6) by optimizing over x, u, and η in an alternating fashion.

At the kth iteration, we solve the following subproblems:

xk+1 = argmin
x

L(x, uk, ηk) (7)

uk+1 = argmin
u

L(xk+1, u, ηk) (8)

ηk+1 = ηk − (uk+1 −Axk+1). (9)

Subproblem (7) is an unweighted least-squares problem in x,

with solution found by solving the linear system of equations

Hxk+1 = µAT (uk − ηk) + λ
∑

j

ET
j Φ

T zj (10)

where H , µATA + λ
∑

j E
T
j Φ

TΦEj . If Ej extracts

all patches from the image x and wraps around the image

boundary, then ET
j Φ

TΦEj is a shift-invariant operator. As

the effect of W is no longer present, H is approximately

shift-invariant and well approximated using Fourier precon-

ditioners. The patch mean removal behavior embedded in Ej

causes λ
∑

j E
T
j Φ

TΦEj to have high-pass behavior and thus

has a nullspace that is disjoint from that of the low-pass ATA,

implying that a well-conditioned Φ is an effective regularizer.

In practice, we do not require an exact solution to (10) and

instead settle for a few preconditioned conjugate-gradient

(PCG) iterations.

The u update problem (8) can be exactly solved by

uk+1 = (W + µI)
−1

(

Wy + µ(Axk+1 + ηk)
)

. (11)

We note that W + µI is a diagonal matrix and is easily in-

verted.

Finally, the update step for the scaled dual variable η is

cheap, requiring only vector additions.

ADMM has changed the difficult strictly convex problem

(4) into a series of subproblems that are much easier to solve

numerically. These subproblems are iterated until the conver-

gence. However, as ADMM is used to solve a subproblem

of the larger optimization problem (P1), there is no need to

force ADMM to fully converge. Still, as a fixed number of

iterations may not reduce the overall cost function, we adopt

the following heuristic strategy: the ADMM iterations are re-

peated until we observe a decrement in the cost (P1) and then

perform three additional iterations. We further impose a min-

imum number of 10 ADMM iterations.

The overall algorithm, which we call AST-CT, is pre-

sented as Algorithm 1. We initialize the sparsifying transform

stage with the Hamming-weighted FBP reconstruction of the

data y, and take our initial Φ to be a separable approximation

of the finite differencing matrix. The auxiliary variables u
and η are reinitialized at the start of each ADMM sequence.

Algorithm 1 AST-CT

INPUT: Initial transform Φ, observed data y
OUTPUT: Reconstructed image x

1: x0
← FBP(y)

2: z0j ← Tγ
(

ΦEjx
0
)

∀j
3: repeat
4: repeat
5: Update Φ by solving (2)
6: zkj ← Tγ (ΦEjx) ∀j
7: until Halting condition

8: i← 0, u0
← Axk, v0 ← ~0

9: repeat
10: Use PCG to find approximate solution

of Hx̃i+1 = µAT (ui
− vi) + λ

∑

j
ET

j Φ
T zij

11: ui+1
← (W + µI)−1

(

Wy + µ(Ax̃i+1 + vi)
)

12: vi+1
← vi −

(

ui+1
−Ax̃i+1

)

13: i← i+ 1
14: until Halting condition
15: xk+1

← x̃i+1

16: until Halting condition

3. EXPERIMENTS

Simulations were implemented in Matlab R2012b on a com-

puter containing an Intel i5-2520m processor and 6GB

of RAM. The matrix-vector products Ax and AT y were

performed using a multithreaded C implementation of the

distance-driven projector and backprojector, which ensures a

matched projector and back-projector pair [18]. Projections

were taken with a parallel beam geometry, although the algo-

rithm can easily incorporate fan-beam measurements. In all

simulations, the attenuation coefficient of water was taken to

be 1.83 mm−1, corresponding to a 80 keV source.

We compare the performance of the algorithms us-

ing two metrics. The first is the root mean square error

(RMSE), defined for an image with K pixels as RMSE =
√

∑K

k=1
(xk − x̄k)2/K, where xk is a pixel from the recon-

structed image and x̄k is the value of a reference image. The

second metric is the Structural Similarity Index which has

been shown to be consistent with qualitative visual appear-

ance [19]. The SSIM ranges from 0 to 1, with higher values

indicating a larger degree of similarity.

We compare the performance of AST-CT against FBP re-

construction and two iterative reconstruction schemes. The

first, TV-CT, uses ADMM to split both the data fidelity and

regularization term [16]. The second, DL-CT, is a modified
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Fig. 1: Left column: Reconstruction from low-dose projections.
Right column: Magnitude of error between reconstruction and x̄.
From top to bottom: FBP, TV-CT, DL-CT, AST-CT. All units in HU

version of Algorithm 1 where regularization term in (1) is

given as
∑

j 0.5‖Ejx − Daj‖22 + γ‖aj‖0, and the ADMM

equations are appropriately modified. In particular, the up-

date for a will be a synthesis sparse coding problem, which

we solve using the efficient OMPbox Matlab toolbox1. The

dictionary is updated using the K-SVD algorithm. We use the

same statistical weighting and preconditioning for AST-CT,

DL-CT, and TV-CT. The only difference in the algorithms is

the choice of regularization function.

For each algorithm, the parameter λ was empirically cho-

sen by sweeping over a large range of values and choosing the

parameter that corresponded to the reconstruction with lowest

RMSE. For AST-CT and DL-CT, a parameter sweep over γ
was also performed. For AST-CT and DL-CT, the ADMM

parameter µ was chosen to ensure that H is well conditioned,

and chosen according to the strategy in [20] for TV-CT. For

AST-CT, the size of the sparsifying transform was chosen to

be 64× 64, while the dictionary in DL-CT is 64× 121. Both

algorithms use 8 × 8 patches with maximal overlap. DL-CT

is trained using 20% of the available patches, chosen at ran-

dom in each outer loop iteration. In contrast, AST-CT uses all

available patches.

Empirically, both AST-CT and DL-CT benefit from per-

forming multiple transform/dictionary and sparse code up-

dates before updating the image. For AST-CT, we execute

10 sparsifying transform and sparse code update steps before

1Available: http://www.cs.technion.ac.il/ ronrubin/software.html

Table 1: RMSE & SSIM of reconstructions from low-dose projec-
tions. RMSE given in HU.

Clinical Low
dose FBP dose FBP AST-CT DL-CT TV-CT

RMSE 19 33 15 16 16
SSIM 0.63 0.40 0.58 0.56 0.55

Table 2: Run time for one outer iteration for each of the algorithms.
Units: seconds

D/Φ a/z Image Total
Update Update Update

FBP 0 0 2.3 2.3
TV-CT 0 0 91.3 91.3
DL-CT 87.5 60.3 85.4 233.3
AST-CT 4.4 0.2 88.4 93.0

performing a minimum of 10 ADMM iterations. For DL-CT,

we perform five dictionary and sparse code updates before ex-

ecuting a minimum of 10 ADMM iterations. For both AST-

CT and DL-CT, we repeat the ADMM iterations until we ob-

serve a decrement in the cost function. We run each algorithm

for a fixed number of overall iterations. For TV-CT, we use a

total of 300 iterations, while for AST-CT and DL-CT we use

30 outer-loop iterations.

We evaluate the performance of the algorithm on real

tomographic images by synthesizing low-dose data from

clinical dose 512 × 512 pixel CT images of a human ab-

domen. The clinical data consists of 0.9mm thick overlap-

ping slices with 0.45mm separation between slices. These

slices have a noise standard deviation of 21 HU, as estimated

over a flat region of the liver. To reduce streaking artifacts,

we averaged 5 consecutive of clinical dose images to form

a ground truth image x̄ with an effective slice thickness

of 2.7mm. Projection data was synthesized by reproject-

ing the image x̄ using the distance driven projector. Low

dose data was synthesized with k-th detector measurement

yk = − log (P (I0 exp−[Ax̄]k) /I0), where P (t) is a Poisson

random variable with mean t. Our synthetic clinical dose data

was formed using I0 = 2 × 106. The resulting Hamming-

weighted FBP reconstruction has a noise standard deviation

of 20 HU, as estimated over a flat region of the liver, which

matches that of the original thin slices. Low dose data is

formed using I0 = 5.0 × 105, which corresponds to dose re-

duction by a factor of 4. Reconstructed images from this data

and the magnitude of the difference between the low-dose

reconstructions and x̄ are shown in Figure 1.

We see that FBP suffers from the usual noise and streak-

ing artifacts as a consequence of the reduction in dose. TV-CT

effectively removes the streaking artifacts, but suffers from

the patchy, staircase-like regions that are typical of this reg-

ularization scheme. The TV-CT reconstruction also has high

error and loss of texture in the bone regions, which are not

well modelled as piecewise-constant. In contrast, both DL-

CT and AST-CT have low error in both the bone and soft

tissue regions, with AST-CT being the better of the two re-



constructions. The RMSE and SSIM values of the reconstruc-

tions are given in Table 1 and show that the adaptive regular-

ization schemes outperform TV, with AST-CT outperforming

DL-CT.

Table 2 lists the run time of a single outer loop iteration

of each algorithm. Although DL-CT uses only 20% of the

available patches, the dictionary and sparse code update steps

more than double the computation time of TV-CT. In contrast,

AST-CT suffers negligible overhead compared to TV-CT.
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