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ABSTRACT

Data-driven and learning-based sparse signal models outperform
analytical models (e.g, wavelets), for image denoising, but require
careful parameter tuning to reach peak performance. In this work,
we provide a solution to the problem of parameter tuning for image
denoising with transform sparsity regularization. We show that by
viewing a learned sparsifying transform as a filter bank we can utilize
the SURELET denoising algorithm to automatically tune parameters
for an image denoising task.

Numerical experiments show that combining SURELET with a
learned sparsifying transform provides the best of both worlds. Our
approach requires no parameter tuning for image denoising, yet out-
performs SURELET with analytic transforms and matches the per-
formance of transform learning denoising with hand-tuned parame-
ters.

Index Terms— Sparsifying transform learning, Sparse repre-
sentations, linear expansion of thresholds (LET), image denoising,
Stein unbiased risk estimator

1. INTRODUCTION
The assumption that a signal admits a sparse representation is now
ubiquitous throughout signal and image processing. These represen-
tations typically obey the synthesis sparsity model, wherein a signal
is constructed as the sum of a few atomic signals, or the analysis
sparsity model, wherein a signal becomes sparse after being acted
on by a linear operator. The transform sparsity model is a close
cousin of the analysis sparsity model. A signal x ∈ Rn satisfies
the transform sparsity model if there is a matrix, W ∈ Rm×n, such
that Wx = z + η, where z is sparse and ‖η‖2 is small. The matrix
W is called an sparsifying transform and z is called an transform
sparse code. For non-square W , the transform model differs from
the strict analysis model by allowing for nonzero η and for the sparse
component z to lie outside of the range space of W .

The problem of finding z given W and x is called transform
sparse coding and is written

arg min
z

1

2
‖Wx− z‖22 + νφ(z) (1)

where φ : Rm → R is a sparsity-promoting functional such as the
`0 quasi-norm or the indicator function for s-sparse vectors. The
solution of this problem is given by proxφ (Wx, ν)1. If φ is a
coordinate-wise separable function (φ(z) =

∑m
i=1 φ̂(zi)), then (1)
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1proxf (x, ν) , argminz 0.5‖x− z‖22 + νf(z)

reduces to a set of scalar minimization problems. These minimiza-
tion problems can be solved in closed-form expression for many pop-
ular choices of φ, e.g. if φ(z) = ‖z‖0, then the solution is given by
hard thresholding: zi = [Wx]i if ([Wx]i)

2 ≥ ν and 0 otherwise.
Sparse representations have traditionally been designed to pro-

vide desirable properties on a mathematical classes of signals, but it
is difficult to specialize these representations to real-world or high-
dimensional signals. This observation inspired the development of
algorithms to learn as sparse model directly from data; an approach
that sacrifices optimality properties on mathematical signal classes
for empirical performance on a limited class of real-world signals.
We refer to these as data-driven sparse representations. Algorithms
have been proposed to learn representations for the synthesis [1, 2,
3], analysis [4, 5, 6, 7, 8, 9], and transform [10, 11, 12] models.

Data-driven sparse representations have been used to achieve
state-of-the-art performance in a variety of inverse problems, includ-
ing image denoising [8, 13, 9, 11, 10] , magnetic resonance imaging
[14, 15], and computed tomography[16, 17, 18, 19, 20, 21]. This is
achieved by either learning a sparse representation offline over a set
of training data, which we call the “universal” approach, or while
solving the inverse problem, which we call the “adaptive” approach.

One of the key challenges in regularization with data-driven
sparse models is the need to tune many parameters; a slow and
cumbersome process. In this work, we present a fast automated
parameter tuning method solution for a restricted class of problems:
denoising an image, corrupted by Gaussian noise, using transform
sparsity regularization with a pre-learned sparsifying transform.
Our method combines the recently proposed filter bank formula-
tion of transform sparsity [15] with the SURELET algorithm, and
[22], requires no parameter tuning for denoising, yet outperforms
SURELET with DCT and Haar transforms and performs on par
with existing universal and adaptive transform learning denoising
algorithms with carefully chosen parameters.

2. FILTER BANK SPARSIFYING TRANSFORMS

Data-driven sparse representations often do not directly model the
image, but rather smaller, possibly overlapping, sub-images called
“patches”. The resulting model is said to be patch-based. We rep-
resent the j-th patch of an image x ∈ Rn as Rjx ∈ RK , where
K � n. The matrix Rj ∈ RK×n is called a patch extraction oper-
ator. Its adjoint, RTj , places a patch into an n-dimensional vector at
the original location of the j-th patch. We have flexibility in choos-
ing the degree of overlap between neighboring patches and behavior
at image boundaries. As the patch size is chosen to be much smaller
than the image, few parameters are needed to describe a patch-based
sparsifying transform. This leads to computationally efficient algo-
rithms and reduces the risk of overfitting.

Patch-based models are commonly used for sparsifying trans-
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Fig. 1: Filter bank structure of transform sparse coding and recon-
struction. Here, W̄i,: is the i-th time-reversed filter.

forms, and typical practice is to treat the transform as a local oper-
ator that acts on each patch independently. However, we can group
the patch extraction operators and the transformW into a single ma-
trix W ∈ Rmn×n that acts on the entire image x. We call W an
image-based, rather than patch-based, sparsifying transform.

The matrix structure ofW depends on the patch extraction pro-
cedure. If maximally overlapping patches are extracted using pe-
riodic boundary conditions, then W = [WT

1 ,WT
2 , . . .WT

m]T is a
stack of block-circulant matrices with circulant blocks, with each
row of W generating a block circulant matrix. We can thus viewW
as an m-channel undecimated filter bank whose filters are given by
the rows of W . With this view, transform sparse coding has a par-
ticularly nice interpretation: it is viewed as of as passing x through
the filter bankW , then applying proxφ (·, ν) to each channel. IfW
is left invertible, its pseudoinverseW† = (WTW)−1WT is a syn-
thesis filter bank. This can be implemented by filtering using time-
reversed versions of the filters inW , followed by the common filter
G = (WTW)−1. This notion of an image-level transform and the
structure of transform sparse coding will be key in the development
of our parameter tuning method.

3. TRANSFORM DENOISING SCHEMES
We begin by reviewing existing transform sparsity denoising algo-
rithms with a fixed, patch-based transform W ∈ Rm×k. We assume
W is full column rank (as is required in transform learning algo-
rithms). Our goal is to recover an image x∗ ∈ Rn from a noisy
observation y. Several methods have been proposed to solve this
task, differing primarily in they manner in which local estimates are
related to the final denoised image.

The simplest approach is apply transform sparse coding to each
patch of y and construct the final estimate by averaging the overlap-
ping denoised patches (Algorithm 1). Note that if the patches are
non-overlapping, W is orthonormal, and φ is the `0 norm, then Al-
gorithm 1 is identical to classical orthonormal transform denoising.

Algorithm 1 Denoising by Transform Sparse Coding

1: zj ← proxφ (WRjy, ν)

2: x← 1
K

∑
j R

T
j W

†zj

A second strategy is to model each noisy patch, Rjy, as being close
to a “clean” patch x̂j that is sparsified by W . Recovery of the j-th
clean patch can be posed as [14]

min
x,zj

1

2
‖Wx̂j − zj‖22 +

τ

2
‖Rjy − x̂j‖22 + νφ(zj), (2)

where τ is a penalty parameter. An alternating minimization algo-
rithm has been proposed to solve (2), and is given as Algorithm 2.
We call this algorithm Iterative Patch Denoising. Again, the final

Algorithm 2 Iterative Patch Denoising (IPD)

1: x̂0j ← Rjy, k ← 0
2: repeat
3: zkj ← proxφ

(
Wx̂kj , ν

)
4: x̂kj ← (WTW + τI)−1(WT zkj + τRjy)
5: k ← k + 1
6: until Halting condition
7: x = 1

K

∑
j R

T
j x̂

k
j

denoised image is given by averaging each denoised patch. These
approaches are natural when non-overlapping patches are used, but
overlapping patches are typically used in practice as they reduce ar-
tifacts near patch boundaries. In this setting we expect Algorithms
1 and 2 to be sub-optimal as they neglect any correlation between
neighboring image patches.

A third denoising scheme involves explicitly modeling the rela-
tionship between denoised image patches and the final image within
the objective function. This recovery problem is given by

min
x,zj

1

2

∑
j=1

‖WRjx− zj‖22 +
τ

2
‖y − x‖22 + νφ(zj), (3)

and can be solved using Algorithm 3, which we call Iterative Global
Denoising (IGD). Note that a single IGD iteration with τ = 0 is
equivalent to performing transform sparse coding denoising using
the image-based sparsifying transformW .

Algorithm 3 Iterative Global Denoising (IGD)

1: x0 ← y, k ← 0
2: repeat
3: zkj ← proxφ

(
WRjx

k, ν
)

4: xk ← (
∑
j R

T
j W

TWRj + τI)−1(
∑
j R

T
j W

T zkj + τy)
5: k ← k + 1
6: until Halting condition

Many features of Algorithms 1-3 are attractive. They are well-
suited for both universal and adaptive transform learning regulariza-
tion, and there is no explicit reliance on the noise distribution. Fur-
ther, Algorithms 2 and 3 can be adapted to solve a general inverse
problem. However, these algorithms suffer from the need to tune
many parameters, including
• the sparsity penalty parameter ν (often varied per-patch),
• the penalty parameter τ ,
• the halting criterion,

and, if the transform is to be learned jointly during denoising,
• any parameters to regularize the learning problem,
• sparsity level scheduling (typically enforcing stronger spar-

sity as the transform is refined),
• the number of transform update steps per each image update,

among others. Careful selection of these parameters is key to suc-
cessful performance of a transform sparsity denoising algorithm.

4. SURE-BASED TRANSFORM DENOISING

Our goal is to develop an efficient transform denoising algorithm
that does not require careful parameter tuning. We will write our de-
noised signal as x = Fθ(y), where y represents the noisy signal and
θ is the set of parameters for our denoising algorithm. Our metric of
interest is the mean squared error (MSE) between the true signal x∗



and our estimate Fθ(y), defined as MSE = n−1‖x∗−Fθ(y)‖22. We
could hope to minimize MSE by optimizing over θ; of course, this
procedure requires knowledge of x∗, which we lack. What is needed
is a way to estimate the MSE from y and Fθ(y).

To that end, we restrict our attention to the following setting: our
sparsifying transform W ∈ Rm×K is fixed, and its induced image-
based sparsifying transformW is left invertible2. We wish to recover
an image x∗ ∈ Rn from noisy observations y = x∗ + e, where
e ∼ N (0, σ2In) with σ2 known.

In this limited context, we gain a powerful tool: Stein’s Unbi-
ased Risk Estimator (SURE) provides an unbiased estimate of the
true MSE, provided that our estimator Fθ(y) is differentiable with
respect to y [23]. Each of Algorithms 1 − 3 satisfy this require-
ment whenever proxφ (·, ν) is differentiable. Unfortunately, this
precludes selecting φ as the `1 or `0 norms, as the soft and hard
thresholding functions are non-differentiable. This can be avoided
by using a smoothed version of these prox functions. We take a
different approach: we replace the prox function entirely by a differ-
entiable, pointwise, but otherwise arbitrary thresholding function ψ
with no regard to the variational formulation (1). 3

SURE provides an estimate of the MSE for any differentiable
estimator Fθ(y), and many algorithms have been proposed for auto-
matic parameter tuning using the SURE criterion. Often, the choice
of minimizing θ cannot be written in closed form and an iterative
solution is necessary- as is the case if we use SURE to tune τ in
Algorithms 2 or 3 [25, 26]. This is unattractive if we wish to tune
thresholding functions on a channel-by-channel basis.

An alternative is to use the SURE Linear Expansion of Thresh-
olds (SURELET) strategy: we expand our denoising function as
Fθ(y) =

∑
i,j ci,jFi,j(y), where Fi,j : Rn → Rn is an “ele-

mentary denoising” function and ci,j are mixing coefficients [22].
For this parameterization of Fθ(y), minimizing SURE can be done
in closed-form and the resulting denoising algorithm is both non-
iterative and computationally inexpensive.

The elementary denoising functions are of the form Fi,j(y) =
Riψj(Diy) for some decomposition operatorDi, reconstruction op-
erator Ri, and pointwise thresholding function ψj . We could use a
patch-based method and set Fi,j(y) = K−1RTi W

−1ψj(WRiy).
Unfortunately, this results in Pn mixing coefficients if P threshold-
ing functions are used. As we have only n independent samples of y,
the SURE will have high variance and be of little use as an estimator.

Instead, we adopt the filter bank perspective. LetWi be the lin-
ear operator implementing the i-th channel of the analysis filter and
Si = (WTW)−1Wi be the corresponding channel of the synthe-
sis filter bank. Our elementary denoising functions are of the form
Fi,j(y) = Siψj(Wiy) for 1 ≤ i ≤ m and 1 ≤ j ≤ P . This results
in Pm� n coefficients and thus reasonable variance of the SURE.
With the form of Fθ fixed, the SURE can be expressed as:

Theorem 1 (Adapted from Corollary 1, [22]). Let
Fθ(y) =

∑
i,j ci,jSiψj(Wiy) satisfy E |∂[Fθ(y)]k/∂yk| < ∞ for

k = 1, . . . N . Then

ε =
1

n
‖Fθ(y)− y‖22 +

2σ2

n

∑
i,j

ci,jα
T
i ψ
′
j(Wiy) + σ2, (4)

where αi = diag {SiWi}, is an unbiased estimate of the MSE =
n−1‖Fθ(y)− x∗‖22.

If we elect to use periodic boundary conditions, the vectorαi can
easily be found as each of the circulant matricesWi is diagonalized

2A sufficient condition is that W is square and invertible [15].
3The link between shrinkage functions and their induced penalty func-

tions has been investigated [24], but this is of little importance to us here.
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Fig. 2: SURE-BUMP thresholding functions
by the DFT. LetQ ∈ Cn×k be a matrix implementing a zero-padded
DFT, and let wi ∈ Rk be the i-th row of W formed into a column
vector. Then the eigenvalues of WT

i Wi are |Qwi|2, and we can
calculate αi = ‖|Qwi|2 /(

∑M
j=1 |Qwj |

2)‖1 where |·|2 and division
are applied elementwise. For non-periodic boundary conditions, a
randomized algorithm can be used [22].

As Fθ is linear in the coefficients ci,j , the SURE is quadratic in
these coefficients, and can thus be minimized by solving the linear
system of equations Ac = u. Here, the matrix A ∈ RPm×Pm and
vector u ∈ RPm have entries

Ai+mj,i′+mj′ =
∑
i,j

Fi,j(y)Fi′j′(y), 1 ≤ i ≤ m (5)

ui+jm = Fi,j(y)T y − σ2αTi ψ
′
j(Wiy) 1 ≤ j ≤ P. (6)

This is a small system of equations: of size 320× 320 for a 64× 64
sparsifying transform and 5 thresholding functions.

Our remaining task is to choose the thresholding functions. We
found that the SURE-BUMP basis of thresholding functions [27]
yielded better performance with our learned transforms than the ba-
sis proposed in the original SURELET work. These thresholding
functions are given by ψj(z) = z · f(α log

(
|z|σ−1 + 1

)
+ β − j)

where f(x) = cos2
(
πx
2

)
if |x| ≤ 1 and 0 otherwise. We choose

α and β to set the center of ψ1 and ψ4 to
√

3‖wi‖2 and
√

15‖wi‖2,
where wi is the i-th row of W . This ensures that our denoising
result is invariant to a rescaling of the rows of W ; a property that
proves to be welcome in practice. We found that using 5 threshold-
ing functions provides good performance without leading to large
estimator variance. We modify ψ1 to linear to the left of its peak and
modify ψ5 to be linear on the right of its peak for added flexibility
in handling small and large coefficients, respectively. Our basis of
thresholding functions is shown in Figure 2.

The complete SURELET algorithm is listed as Algorithm 4.
The dominant computation being calculation of Siψj(Wiy) for i =
1, . . .m and j = 1 . . . P . Assuming periodic boundary conditions
and using Fourier-based convolution, Algorithm 4 requires a total
of 2m(P + 1) + 1 FFTs. Using a filter bank structure to imple-
ment a single iteration of Algorithm 3 requires 3m + 2 FFTs, and
denoising typically requires 5 to 20 iterations. Thus using P = 5
thresholding functions, Algorithm 4 slightly cheaper than 5 itera-
tions of Algorithm 3. However, Algorithm 3 must typically be run
many times to tune parameters. The true computational advantage
of the SURELET-based algorithm 4 is that it must be run only once.

There is a key difference in perspective in denoising via trans-
form sparse coding and SURELET denoising. Denoising by trans-
form sparse coding aims to minimize the sparsification residual in
the transform domain by solving (1), with the hope is that if W is
well-conditioned this serves as a cheap and effective a proxy for min-
imizing the true quantity of interest, the image-domain MSE. In con-
trast, minimizing SURE (either directly or using SURELET) reduces
the MSE directly in the image domain.

5. EXPERIMENTS
We call our combination of SURELET with a Learned Sparsifying
Transform SURELET-LST . We compare this method against a suite



Algorithm 4 SURELET Denoising

INPUT: W ∈ RM×k; Noisy image y ∈ Rn; Noise variance σ2.
1: Q← DFT matrix
2: for i = 1, . . . ,m, j = 1, . . . , P do
3: αi ← ‖|Qwi|2 /(

∑M
j=1 |Qwj |

2)‖1
4: Calculate and store Fi,j(y) = Siψj(Wiy)
5: end for
6: Construct A and u according to (5), (6)
7: Solve Ac = u
8: x←

∑m
i=1

∑P
j=1 ci,jFi,j(y)

of competing methods. Software to reproduce these experiments will
be made available4. To evaluate the benefit of the learning procedure,
we compare against SURELET using the stationary wavelet trans-
form (Haar wavelets with 5 levels) and DCT (8× 8 filters). We call
these methods SURELET-SWT and SURELET-DCT respectively.
We also compare against Algorithm 3 using the 8× 8 DCT (denoted
IGD-DCT ) and our pre-learned sparsifying transform (IGD-DCT)
with a hard-thresholding nonlinearity. We test these two algorithms
in an unrealistically favorable scenario by allowing an “oracle” to
return the true MSE at each iteration, and we use this information to
tune the parameters ν, λ, and the number of iterations for each noise
level. These results indicate the upper bound of performance for
hand-tuned parameters and hard-thresholding. Note that we could
use SURE to estimate these parameters if utilized a differentiable
thresholding function in place of hard thresholding.

We compare against an adaptive, joint learning/denoising
method combined with IPD (Algorithm 2), which we denote IPD-
AST [10]. Finally, we compare against BM3D, a popular denoising
algorithm whose only parameter is the noise variance [28].

Our fixed sparsifying transform, used in SURELET-LST and
IGD-LST , was pre-learned using the five 512× 512 images shown
in Figure 3a. Each image was normalized to unit `2 norm. We
used 1000 iterations of the square transform learning algorithm with
closed-form updates [10] with regularization parameters λ and ξ
both set to 0.1. The 64×64 transform was learned using hard thresh-
olding with threshold set to 5× 10−4. The algorithm was initialized
with the DCT. The resulting transform filters are shown in Figure
3. All patch-methods utilized maximally overlapping 8× 8 patches
and periodic boundary conditions; DCT methods should be inter-
preted as cycle-spinning a block-DCT transform. Unlike the origi-
nal SURELET work, we saw little denoising improvement using our
learned transforms by using symmetric boundary conditions.

We evaluated performance at various noise levels using six pop-
ular test images and 10 noise realizations. Table 1 reports the mean
reconstruction peak signal to noise ratio (PSNR) in dB, defined by
PSNR = 20 log10(255/(5122 ·MSE)).

These results demonstrate that the learned transforms denoise
better than DCT and SWT. Our SURELET based methods perform
on-par or better than the oracle versions, especially at the lower
noise levels. That SURELET-LST occasionally outperforms IGD-
LST suggests that the latter may be improved by replacing hard
thresholding with a different nonlinearity. Importantly, we note that
SURELET-LST typically outperforms IPD-AST even at low noise,
when joint learning/denoising methods are typically expected to out-
perform universal methods [1].

4http://transformlearning.csl.illinois.edu/

(a) (b)

Fig. 3: (a): Training data for transform learning. (b): Learned 64×
64 sparsifying transform, with rows reshaped into 8× 8 filters.

6. CONCLUSIONS
We have limited our scope to removing Gaussian noise from an im-
age using a fixed sparsifying transform using the SURELET algo-
rithm. Experiments show that combining SURELET with a learned
sparsifying transform outperforms SURELET using the SWT and
DCT. Our method involves no parameter tuning during the denoising
stage, yet performs as well as existing transform learning denoising
algorithms that use carefully tuned parameters.

While SURELET-LST does not uniformly outperform BM3D,
it represents a first step in parameter-free denoising with learned
sparsifying transforms. It has been shown that transform learning
with sophisticated, structured transforms provides uniformly better
denoising performance than the transforms considered in this paper,
but introduce more parameters to tune [11, 29]. Future work will
investigate the use of SURE and SURELET for these transforms.

We have only applied our method to pre-learned transforms.
This is a sub-optimal approach: the transform is learned using a fixed
thresholding function, but denoises using the SURELET thresholds.
We will address the use of SURE to optimize parameters in a joint
learning/denoising framework. Finally, we anticipate using the it-
erative SURELET [30] and Projected Generalized SURE[25, 31]
to provide automatic parameter tuning for general inverse problems
with noise from the exponential family of distributions.
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