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Abstract—The extremal values of multivariate trigonometric
polynomials are of interest in fields ranging from control theory
to filter design, but finding the extremal values of such a poly-
nomial is generally NP-Hard. In this paper, we develop simple
and efficiently computable estimates of the extremal values of a
multivariate trigonometric polynomial directly from its samples.
We provide an upper bound on the modulus of a complex
trigonometric polynomial, and develop upper and lower bounds
for real trigonometric polynomials. For a univariate polynomial,
these bounds are tighter than existing bounds, and the extension
to multivariate polynomials is new. As an application, the lower
bound provides a sufficient condition to certify global positivity
of a real trigonometric polynomial.

I. INTRODUCTION

A. Motivation

Trigonometric polynomials are intimately linked to discrete-
time signal processing, arising in problems of controls, com-
munications, filter design, and super resolution, among others.
For example, the Discrete-Time Fourier Transform (DTFT)
converts a sequence of length n into a trigonometric polyno-
mial of degree n− 1. Multivariate trigonometric polynomials
arise in a similar fashion, as the d-dimensional DTFT yields
a d-variate trigonometric polynomial.

The extremal values of a trigonometric polynomial are often
of interest. In an Orthogonal Frequency Division Multiplexing
(OFDM) communication system, the transmitted signal is a
univariate trigonometric polynomial, and the maximum modu-
lus of this signal must be accounted for when designing power
amplifiers [1]. The maximum modulus of a trigonometric
polynomial is related to the stability of a control system in the
face of perturbations [2]. The maximum gain and attenuation
of a Finite Impulse Response (FIR) filter are the maximum
and minimum values of a real and non-negative trigonometric
polynomial. Unfortunately, determining the extremal values of
a multivariate polynomial given its coefficients is NP-Hard [3],
[4].

An approximation to the extremal values can be found by
discretizing the polynomial and performing a grid search, but
this method is sensitive to the discretization level. Instead,
one can try to find the extremal values using an optimization-
based approach. However, iterative descent algorithms are
prone to finding local optima as a generic polynomial is not a
convex function. The sum-of-squares machinery provides an
alternative approach: extremal values of a polynomial can be
found by solving a hierarchy of semidefinite program (SDP)
feasibility problems [2], [4], [5]. Truncating the sequence of
SDPs provides a lower (or upper) bound to the minimum
(or maximum) of the polynomial. However, the size of the
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SDPs grows exponentially in the number of variables, d, and
polynomially in the degree, n, limiting the applicability of this
approach.

In many applications we have access to samples of the poly-
nomial rather than to the coefficients of the polynomial itself.
Equally spaced samples of a trigonometric polynomial arise,
for instance, when computing the Discrete Fourier Transform
(DFT) of a sequence. Given enough samples, the polynomial
can be evaluated at any point by periodic interpolation, and
thus grid search or optimization-based approaches can still be
used; however, the previously described issues of discretization
error, local minima, and complexity remain.

In this paper, we derive simple estimates for the extremal
values of a multivariate trigonometric polynomial directly from
its samples, i.e. with no interpolation step. For a complex
polynomial we provide an upper bound on its modulus, while
for a real trigonometric polynomial we provide upper and
lower bounds. Upper bounds of this style have been derived
for univariate trigonometric polynomials– our work provides
an extension to the multivariate case. We describe two sample
applications that benefit from our lower bound and from the
extension to multivariate polynomials.

i) Design of Perfect Reconstruction Filter Banks. A
multi-rate filter bank in d dimensions is characterized by its
polyphase matrix, H(z) ∈ Cm×n, where each entry in the
matrix is a d-variate Laurent polynomial1 in z ∈ Cd [6].

Many important properties of the filter bank can be inferred
from the polyphase matrix. A filter bank is said to be perfect
reconstruction (PR) if any signal can be recovered, up to
scaling and a shift, from its filtered form. The design and
characterization of multirate filter banks in one dimension
is well understood, but becomes difficult in higher dimen-
sions due to the lack of a spectral factorization theorem
[7]–[11]. The perfect reconstruction condition is equivalent
to the strict positivity of the real trigonometric polynomial
pH(ω) = det

(
H∗(ejω)H(ejω)

)
[6], [12]. The lower bounds

developed in this paper provide a sufficient condition to verify
the perfect reconstruction property from samples of pH(ω)
which are easily obtained using the DFT.

ii) Estimating the smallest eigenvalue of a Hermitian
Block Toeplitz matrix with Toeplitz Blocks.

Toeplitz matrices describe shift-invariant phenomena and
are found in countless applications. Toeplitz matrices model
convolution with a finite impulse response filter, and the
covariance matrix formed from a random vector drawn from
a wide-sense stationary (WSS) random process is symmetric

1A Laurent polynomial allows negative powers of the argument.
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and Toeplitz. An n× n Toeplitz matrix is of the form

Xn =


x0 x−1 x−2 · · · x−n+1

x1 x0 x−1

x2 x1 x0

...
...

. . .
xn−1 · · · x0

 , (1)

and a Hermitian symmetric Toeplitz matrix satisfies x∗i = x−i.
Associated with Xn is the trigonometric polynomial 2

x̂(ω) =
n∑

k=−n
xke

jωk, −π ≤ ω < π, (2)

with coefficients

xk =
1

2π

∫ π

−π
x̂(ω)e−jkωdt, k ∈ Z. (3)

The polynomial x̂ is known as the symbol of Xn. If the symbol
is real then Xn is Hermitian, and if x̂ is strictly positive then
Xn is positive definite.

A vast array of literature has examined the connections
between a real symbol x̂ and the eigenvalues of the Hermitian
Toeplitz matrices Xn as n→∞; see [13], [14] and references
therein. One result of particular interest states that the eigen-
values of Xn are upper and lower bounded by the supremum
and infimum of the symbol.

The smallest eigenvalue of a Toeplitz matrix is of interest
in many applications [15]–[17], and there are several iterative
algorithms to efficiently calculate this eigenvalue [18]. We
propose a non-iterative estimate of the smallest and largest
eigenvalues of Xn by first bounding the eigenvalues in terms
of the symbol, then bounding the symbol in terms of the entries
of Xn.

Shift invariant phenomena in two dimensions are described
by Block Toeplitz matrices with Toeplitz Blocks (BTTB).
The symbol for a BTTB matrix is a bi-variate trigonometric
polynomial, and the bounds developed in this paper hold in
this case.

B. Notation

For a set X, let Xd be the d-fold Cartesian product X×. . .×
X. Let T = [0, 2π] be the torus and Z be the integers. The
set {0, . . . N − 1} is written [N ]. We denote the space of d-
variate trigonometric polynomials with maximum component
degree n as

T dn , span
{
ejk·ω : ω ∈ Td, k ∈ Zd, ‖k‖∞ ≤ n

}
, (4)

where x · y ,
∑d
i=1 xiyi is the Euclidean inner product and

‖k‖∞ = max1≤i≤d |ki|. An element of T dn is explicitly given
by

p(ω) =
n∑

k1=−n
. . .

n∑
kd=−n

ck1...kde
jk1ω1 . . . ejkdωd . (5)

2This differs from the usual approach of describing Toeplitz matrices,
wherein a Toeplitz matrix of size n is generated according to (3) for an
underlying symbol and the behavior as n → ∞ is investigated. Here, we
work with a Toeplitz matrix of fixed size.

If the coefficients satisfy ck1,...,kd = c∗−k1,...,−kd , then p(ω) is
real for all ω and p is said to be a real trigonometric polyno-
mial. We denote the space of real trigonometric polynomials
by T̄ dn . For p ∈ T dn let ‖p‖∞ = maxω∈Td |p(ω)|. We write the
set of N equidistant sampling points on T as

ΘN ,

{
ωk = k

2π

N
: k = 0, . . . , N − 1

}
, (6)

and on Td as Θd
N , given by the d-fold Cartesian product ΘN×

. . .×ΘN . The maximum modulus of p over Θd
N is

‖p‖Nd,∞ , max
ω∈Θd

N

|p(ω)| . (7)

C. Problem Statement and Existing Results

Let p ∈ T̄ dn . Our goal is to find scalars a ≤ b, depending
only on N, d, and the Nd samples

{
p(ω) : ω ∈ Θd

N

}
, such

that
a ≤ p(ω) ≤ b. (8)

For complex trigonometric polynomials, p ∈ T dn , we want
an upper bound on the modulus; a lower bound on the
modulus can be obtained by considering the real trigonometric
polynomial p′ ∈ T̄ 2d

n : ω 7→ |p(ω)|2.
By the periodic sampling theorem (Lemma 1), trigonometric

interpolation perfectly recovers p ∈ T dn from (2n + 1)d

uniformly spaced samples. A standard result of approximation
theory states [19], [20]

‖p‖∞ ≤ ‖p‖(2n+1)d,∞

(
π + 4

π
+

2

π
log(2n+ 1)

)d
, (9)

but this becomes weak as the polynomial degree n or the
dimension d of its domain increases. A more stable estimate
is obtained by using non-uniformly spaced samples. However,
in many applications the sampled polynomial is obtained using
the DFT, thus providing uniformly spaced samples.

Our aim is to get stronger estimates by using more (uni-
formly spaced) samples than are required by the periodic
sampling theorem. Upper bounds for univariate trigonometric
polynomials have been developed using this strategy. Let
p ∈ Tn. Given an integer m and N = 2m > 2n+ 1 samples
of p, Ehlich and Zeller showed

‖p‖∞ ≤
(

cos
( πn

2m

))−1

‖p‖N,∞ (10)

and this bound is sharp if n is a divisor of m.
Wunder and Boche developed a more flexible bound: given

N ≥ 2n+ 1, they showed [21]

‖p‖∞ ≤

√
N + 2n+ 1

N − (2n+ 1)
‖p‖N,∞. (11)

Zimmermann et al. refined this bound to

‖p‖∞ ≤
‖p‖N,∞√

1− α
, (12)

where α = 2n/N . The quantity α−1 is almost equal to the
oversampling factor N

2n+1 , and plays the same role: α is a
decreasing function of N , and for N ≥ 2n + 1, we have
α < 1.
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The bounds (9) to (12) each have the form:

‖p‖∞ ≤ CdN,n‖p‖Nd,∞, (13)

where CdN,n is a real, non-negative constant that depends on
N,n and, in the case of (9), d. In the univariate case, Zim-
mermann et al. studied the optimal value of CN,n and showed
that it depends only on N/n. They also characterized extremal
polynomials, for which (13) holds with equality, and discussed
a Remez-like algorithm to construct such polynomials for
given N and n [1].

D. Contributions

Our contributions can be summarized as follows: (i) we
develop upper bounds of the form (13) for multivariate
trigonometric polynomials; these include both a multivariate
extension of the bound (12), as well as a tighter bound for the
case of low oversampling (N ≈ 2n + 1); (ii) we specialize
and strengthen the bounds for real polynomials; and (iii) we
derive a lower bound for real trigonometric polynomials.

II. STATEMENT OF MAIN RESULTS

In this section we collect our main results; proofs are
deferred to Sections III and IV. For simplicity we work with
T dn , but the results can be easily strengthened by allowing for
the component degree to vary in each of the d dimensions.

Our first task is to obtain bounds of the form (13) for
multivariate trigonometric polynomials. We have a pair of such
bounds:

Theorem 1. Let p ∈ T dn . Take N ≥ 2n+1 and set α = 2n/N .
Then

‖p‖∞ ≤ CdN,n‖p‖Nd,∞, (14)

where

CdN,n ,

(
sup
ω∈T

{ ∑
ωk∈ΘN

∣∣∣∣∣ sin
(
Nω
2

)
sin
(
N−2n

2 (ω − ωk)
)

sin2 ((ω − ωk)/2)

∣∣∣∣∣
})d

Nd(N − 2n)d

(15)

≤ (1− α)
− d

2 . (16)

Further,

CdN,n‖p‖Nd,∞−‖p‖∞ ≤
(
dn

N
+O((dn/N)2)

)
‖p‖∞. (17)

The bound (15) involves only a univariate function and can
be calculated numerically. Still, the expression is unwieldy;
(16) is a simpler, but weaker, alternative.

We plot the behavior of CN,n, given by (15) and (16) for
the d = 1 univariate case, in Fig. 1. Also shown in Fig. 1 are
the optimal values of CN,n for integer oversampling factors,
given by (10), and the values obtained using Zimmermann’s
Remez-like algorithm [1].

The upper bound (14) with CdN,n given by (15) is nearly
tight for N/(2n) < 2, whereas replacing CdN,n by its upper
bound (16) results in a weakening of (14) in this regime.
This gap makes (15) particularly attractive in the d-variate

1 2 3 4 5 6

Oversampling: N/(2n)

1

2

3

4

5

Eq. (15)

(1− 2n/N)−1/2

Sharp Lower Bound (Remez)
(cos (πn/N))−1

Fig. 1: Comparing upper bounds of the form (14) as a function
of oversampling ratio, N/2n, calculated with n = 8. Green
diamonds indicate the optimal upper bound as calculated using
a Remez-type algorithm [1, Fig. 2]. Black dots denote the
upper bound (10) at valid locations, i.e. N = 2m > 2n+ 1.

case, where the bounds are raised to the d-th power, further
increasing the gap between (15) and (16).

However, for oversampling factor greater than two, i.e.
N/(2n) > 2, the difference in using (15) or (16) becomes
negligible. Both bounds coincide with the optimal value at
N = 4n, and are within roughly 10% of the optimal value
for large oversampling factors. Hence, both (15) and (16) are
useful, in different oversampling regimes.

Next, we obtain a tighter estimate and a lower bound by
restricting our attention to real polynomials.

Corollary 1. Let p ∈ T̄ dn and take N ≥ 2n + 1. Set A ,
maxω∈Θd

N
p(ω), B , minω∈Θd

N
p(ω) and take CdN,n as in
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Theorem 1. Then,

p(ω) ≤ 1

2

(
A+B + CdN,n (A−B)

)
, (18)

p(ω) ≥ 1

2

(
A+B − CdN,n (A−B)

)
, (19)

‖p‖∞ ≤
1

2

(
|A+B|+ CdN,n(A−B)

)
. (20)

The estimates (18) and (20) coincide with (14) in the
case that minω∈Θd

N
p(ω) = −maxω∈Θd

N
p(ω), and are tighter

otherwise, making this refinement especially useful for non-
negative polynomials.

By Theorem 1, CdN,n → 1 as N → ∞. Thus as N → ∞,
the right hand side of (19) approaches B, and by continuity we
have B = minω∈Θd

N
p(ω) → minω∈Td p(ω). Thus the bound

is tight as N → ∞. In the case of A = B, the right hand
side of (19) is A = ‖p‖Nd,∞, and thus p(ω) > 0 so long as
the samples of p are not uniformly zero. This is expected, as
otherwise the polynomial p(ω)−‖p‖Nd,∞ ∈ T dn would vanish
on a set of Nd > (2n+1)d points, which is impossible unless
the polynomial is identically zero.

A little algebra on (19) establishes a sufficient condition
to verify the strict positivity of a multivariate trigonometric
polynomial.

Corollary 2. Let p ∈ T̄ dn and N ≥ 2n+ 1. Set α = 2n/N . If
p(ω) > 0 for all ω ∈ Θd

N and

κN ,
maxω∈Θd

N
p(ω)

minω∈Θd
N
p(ω)

<
CdN,n + 1

CdN,n − 1
(21)

then p(ω) > 0 for all ω ∈ Td. Furthermore, as CdN,n ≤
(1− α)

− d
2 , (21) can be replaced by the more stringent, but

easier to evaluate, condition

κN <
1 + (1− α)

d
2

1− (1− α)
d
2

. (22)

For p ∈ T̄ dn with non-negative samples, we call the quantity
κN in (21) the N-sample dynamic range.

Corollary 2 provides an easy way to certify strict positivity
of a real, non-negative polynomial from its samples: simply
calculate the dynamic range κN and verify that (21) or (22)
holds. These conditions are easier to satisfy (as a function of
the oversampling rate) for polynomials whose maximum and
minimum sampled values are close to one another. Intuitively,
if the sampled values of a real trigonometric polynomial
are strictly positive and don’t vary “too much”, then the
polynomial is strictly positive over its entire domain. For
fixed n and d, the right hand side of (22) is an increasing
function of N , illustrating a tradeoff: polynomials with a large
amount of variation, and thus large values of κN , require larger
oversampling factors N for the bounds to hold. Note that κN
is not necessarily a monotone function of N , but is monotone
in k when choosing N = 2k. Fig. 2 illustrates the regions for
which (21) and (22) hold.

III. PROOF OF THEOREM 1

We begin by proving Theorem 1, which extends the upper
bound (12) from univariate to multivariate polynomials and

1

5

10

κN

d = 1, n = 8

1.0 1.5 2.0 2.5 3.0
Oversampling: N/(2n+ 1)

1

3

5

10

κN

d = 2, n = 8

Fig. 2: Any p ∈ T̄ dn with positive samples and whose N -
sample signed dynamic range κN lies in the shaded region
must be strictly positive. The orange shaded region is certified
using (22), while the blue region uses (21).

provides a tighter result for the case of low oversampling.
Due to the separable nature of T dn (e.g. T dn is the d-fold tensor
product of Tn with itself), the proof is similar to the univariate
case [1]. We consider both real and complex trigonometric
polynomials.

A. Interpolation by the Dirichlet Kernel

For n = [n1, . . . nd] ∈ [N ]
d, the n-th order Dirichlet kernel

is the tensor product of d kernels, each of order ni:

Dd
n(ω) ,

∑
|ki|≤ni

ejk·ω =

d∏
i=1

sin 2ni+1
2 ωi

sin ωi

2

ω ∈ Td, k ∈ Zd.

(23)
If n is identical in each index (i.e. ni = n for each i ∈ [d])
we write the kernel as Dd

n(ω). The Dirichlet kernel is key to
the periodic sampling formula:

Lemma 1. Let p ∈ T dn be sampled on Θd
N . Let m be an

integer with m ≥ n. If N > n+m, then

p(ω) =
1

Nd

∑
ωk∈Θd

N

p(ωk)Dd
m(ω − ωk) (24)

for all ω ∈ Td.

Lemma 1 (e.g., [22]) is the periodic counterpart of sinc
interpolation arising in the Whittaker-Shannon interpolation
formula. The bound (9) can be obtained from (24) when N =
2n+ 1 [20].

B. Interpolation by the de la Vallée-Poussin Kernel

A better result is obtained by oversampling (N > 2n+ 1)
and exploiting the nice properties of summation kernels.
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Let n,m be integers with m > n and define Vdn,m ={
l ∈ Zd : n ≤ li < m

}
. The n,m-th de la Vallée-Poussin ker-

nel is defined as the moving average of Dirichlet kernels:

Dd
n,m(ω) ,

1

(m− n)d

∑
n∈Vd

n,m

Dd
n(ω) (25)

=
1

(m− n)d

d∏
i=1

sin (m+n
2 ωi) sin (m−n2 ωi)

sin2 (ωi/2)
. (26)

Taking n = 0 recovers the well-known Fejér kernel [23],

Dd
0,m =

1

md

d∏
i=1

sin2 (m2 ωi)

sin2 (ωi/2)
. (27)

The Fejér kernel is used to derive the bound (11) [21].
Importantly, the de la Vallée-Poussin kernel inherits the

reproducing property of the Dirichlet kernel.

Lemma 2. For any p ∈ T dn we have

p(ω) =
1

Nd

∑
ωk∈Θd

N

p(ωk)Dd
n,m(ω − ωk) (28)

for all ω ∈ Td whenever m > n and N ≥ n+m.

Proof. Expanding the de la Vallée-Poussin kernel into a sum
of Dirichlet kernels and applying Lemma 1,

1

Nd

∑
ωk∈Θd

N

p(ωk)Dd
n,m(ω − ωk) (29)

=
1

(m− n)d

∑
n∈Vd

n,m

1

Nd

∑
ωk∈Θd

N

p(ωk)Dd
n(ω − ωk)

(30)

=
1

(m− n)d

∑
n∈Vd

n,m

p(ω) = p(ω). (31)

C. Proof of Theorem 1

The upper bound of Theorem 1 depends on estimates of∑
ωk∈Θd

N

∣∣Dd
n,m(ω − ωk)

∣∣, which we collect into a pair of
lemmas.

Lemma 3. Take N ≥ 2n+ 1. Then, for all ω ∈ Td,∑
ωk∈Θd

N

∣∣Dd
n,N−n(ω − ωk)

∣∣
≤

(
sup
ω∈T

∑
ωk∈ΘN

|Dn,N−n(ω − ωk)|

)d
(32)

=

(
sup
ω∈T

{ ∑
ωk∈ΘN

∣∣∣∣∣ sin
(
Nω
2

)
sin
(
N−2n

2 (ω − ωk)
)

sin2 ((ω − ωk)/2)

∣∣∣∣∣
})d

(N − 2n)d
.

Proof. First, we fix notation: for ωk ∈ Θd
N and k ∈ [N ]d, we

define ωki = 2πki/N . Using (26), we have∑
ωk∈Θd

N

∣∣Dd
n,N−n(ω − ωk)

∣∣ (N − 2n)d

=
∑

ωk∈Θd
N

d∏
i=1

∣∣∣∣∣ sin (N2 (ωi − ωki)) sin (N−2n
2 (ωi − ωki))

sin2 ((ωi − ωki)/2)

∣∣∣∣∣
≤

(
sup
ω∈T

∑
ωk∈ΘN

∣∣∣∣∣ sin (N2 (ω − ωk)) sin (N−2n
2 (ω − ωk))

sin2 ((ω − ωk)/2)

∣∣∣∣∣
)d

(33)

=

(
sup
ω∈T

∑
ωk∈ΘN

∣∣∣∣∣ sin (Nω2 ) sin (N−2n
2 (ω − ωk))

sin2 ((ω − ωk)/2)

∣∣∣∣∣
)d

,

where the final step follows from
∣∣sin (N2 (ω − 2πk/N))

∣∣ =∣∣sin (Nω2 )
∣∣ for k ∈ [N ]. The bound (32) is obtained by

replacing (33) with the definition of Dn,N−n(ω) given by
(26).

The following lemma for univariate trigonometric polyno-
mials is key to the derivation of (12). 3

Lemma 4. Let m > n and take N ≥ n+m. Then

∑
ωk∈ΘN

|Dn,m(ω − ωk)| ≤ N
(
m+ n

m− n

) 1
2

(34)

for all ω ∈ T. In particular, taking N ≥ 2n+1 and m = N−n
yields

∑
ωk∈ΘN

|Dn,N−n(ω − ωk)| ≤ N
(

N

N − 2n

) 1
2

. (35)

Proof. See [1, Theorem 1].

We are now set to complete the proof of Theorem 1.

Proof of Theorem 1. Without loss of generality, assume
‖p‖Nd,∞ = 1. Then, by Lemma 2, we have

|p(ω)| =

∣∣∣∣∣∣ 1

Nd

∑
ωk∈Θd

N

p(ωk)Dd
n,N−n(ω − ωk)

∣∣∣∣∣∣ (36)

≤ 1

Nd

∑
ωk∈Θd

N

∣∣p(ωk)Dd
n,N−n(ω − ωk)

∣∣ (37)

≤ 1

Nd

∑
ωk∈Θd

N

∣∣Dd
n,N−n(ω − ωk)

∣∣ (38)

where (37) and (38) follow from the triangle inquality and
Hölder’s inequality, respectively.

3A multivariate extension is straightforward, but not used in the proof of
Theorem 1 and is omitted here.
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Now, applying Lemma 3, we have

|p(ω)| ≤ N−d
(

sup
ω∈T

∑
ωk∈ΘN

|Dn,N−n(ω − ωk)|

)d
(39)

=

(
sup
ω∈T

{ ∑
ωk∈ΘN

∣∣∣∣∣ sin
(
Nω
2

)
sin
(
N−2n

2 (ω − ωk)
)

sin2 ((ω − ωk)/2)

∣∣∣∣∣
})d

Nd(N − 2n)d
,

(40)

which implies (14)-(15). Applying the bound (35) of Lemma 4
to (39) yields

|p(ω)| ≤
(

N

N − 2n

) d
2

= (1− α)
− d

2 , (41)

which establishes (16).
Finally, as N ≥ 2n + 1, by Taylor’s theorem we have

(1− α)−
d
2 = 1 + dn

N +O((dn/N)2). It follows that

CdN,n‖p‖Nd,∞ − ‖p‖∞ ≤
(
CdN,n − 1)

)
‖p‖∞

≤
(

(1− α)−
d
2 − 1

)
‖p‖∞

=

(
dn

N
+O((dn/N)2)

)
‖p‖∞,

where we have used ‖p‖Nd,∞ ≤ ‖p‖∞.

IV. PROOF OF REFINEMENT AND LOWER BOUND FOR
REAL TRIGONOMETRIC POLYNOMIALS

We now restrict our attention to real trigonometric polyno-
mials. We will use the shorthand notation A , maxω∈Θd

N
p(ω)

and B , minω∈Θd
N
p(ω). Note both A and B are (not

necessarily monotonic) functions of N .
The bound of Theorem 1 is at its tightest whenever the

samples of p(ω) are centered about zero, i.e. minω∈Θd
N
p(ω) =

−maxω∈Θd
N
p(ω), and can be loose otherwise. To see this,

take c > 0 and consider the shifted polynomial p̃(ω) = p(ω)+
c. Applying Theorem 1 yields

‖p̃‖∞ ≤ CdN,n‖p̃‖Nd,∞ (42)

≤ CdN,n(‖p‖Nd,∞ + c). (43)

Applying the triangle inequality in advance of Theorem 1
results in

‖p̃‖∞ ≤ ‖p‖∞ + c ≤ CdN,n‖p‖Nd,∞ + c, (44)

which may be much smaller than (43), but presupposes
knowledge of c. While we do not know this offset, it can be
estimated from the samples of p̃. This motivates our refined
bound, Corollary 1, which we now prove.

Corollary 1. Let p ∈ T̄ dn and take N ≥ 2n + 1. Set A ,
maxω∈Θd

N
p(ω), B , minω∈Θd

N
p(ω) and take CdN,n as in

Theorem 1. Then,

p(ω) ≤ 1

2

(
A+B + CdN,n (A−B)

)
, (18)

p(ω) ≥ 1

2

(
A+B − CdN,n (A−B)

)
, (19)

‖p‖∞ ≤
1

2

(
|A+B|+ CdN,n(A−B)

)
. (20)

Proof of Corollary 1. If A = B then p(ω) − A vanishes on
a set of Nd ≥ (2n + 1)d points; thus p(ω) is the constant
polynomial p(ω) = A and (18) to (20) hold with equality.

Define q ∈ T dn as q(ω) , p(ω)− A+B
2 , which satisfies

‖q‖Nd,∞ =

∣∣∣∣A− A+B

2

∣∣∣∣ =
A−B

2
. (45)

By Theorem 1, we have for all ω ∈ Td,

|q(ω)| ≤ CdN,n
A−B

2
. (46)

Combined with the definition of q(ω), we have

− CdN,n
A−B

2
≤ p(ω)− A+B

2
≤ CdN,n

A−B
2

, (47)

and rearranging gives (18) and (19).
Finally, we have

|p(ω)| ≤ |q(ω)|+
∣∣∣∣A+B

2

∣∣∣∣ (48)

≤ CdN,n
A−B

2
+

∣∣∣∣A+B

2

∣∣∣∣ , (49)

yielding (20).

V. EXAMPLES

A. Univariate Example

Fig. 3 illustrates our bounds for a randomly chosen univari-
ate real trigonometric polynomial, p ∈ T̄ 1

8 , given by4

p(ω) , 3.9 +
1

2

(
0.4 cos(ω) + 1.0 sin(ω)

+ 2.2 cos(2ω) + 1.9 sin(2ω)− 1.0 cos(3ω) + 1.0 sin(3ω)

− 0.2 cos(4ω)− 0.1 sin(4ω) + 0.4 cos(5ω) + 0.1 sin(5ω)

+ 1.5 cos(6ω) + 0.8 sin(6ω) + 0.1 cos(7ω) + 0.4 sin(7ω)

+ 0.3 cos(8ω) + 1.5 sin(8ω)
)
.

(50)
Note that the bounds are not necessarily monotonic functions
of N . We see that an oversampling factor of 1.3, or N =
23, is enough samples to certify the strict positivity of this
polynomial.

B. Trivariate Example

For simplicity, take p ∈ T̄ 3
n to be p(ω) = D3

n(ω)/(2n+1)3,
where D3

n is the Dirichlet kernel (23) with (uniform) degree
n and the scaling is such that ‖p‖∞ = 1.

We obtain uniform samples of p(ω) over Θd
N by computing

a zero-padded Discrete Fourier Transform. In particular, we
embed an n × n × n array of ones into an N × N × N
array of zeros, and apply the Fast Fourier Transform algorithm
to this array. We choose N to be a favorable size for the
FFT algorithm, such as a power of two. As we choose N
proportional to the degree n of p, our method scales as
O(nd log n) with d = 3 in this example.

Fig. 4 shows the estimates obtained using Corollary 1 as a
function of N for a variety of orders n; the true maximum

4The coefficients were drawn from a standard normal distribution and
rounded to the first decimal point.
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1 − α
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max
ω

p(ω)

min
ω

p(ω)

Theorem 1, CN,n =
√
1 − α

Theorem 1, CN,n = Eq (15)

Corollary 1, CN,n =
√
1 − α

Corollary 1, CN,n = Eq (15)
max
ω

p(ω)

min
ω

p(ω)

(b)

Fig. 3: Example of upper and lower bounds for p ∈ T̄ 1
8 given

by (50). (a): Test Polynomial. (b): Upper and lower bounds as
a function of oversampling rate.

value of p(ω) is 1 and the minimum can be shown to be
roughly −2/(3π) ≈ −0.22. Evaluating the bounds for n = 32
and N = 512 took roughly one second on a workstation with
an Intel i7-6700K CPU and 32GB of RAM.

To draw a comparison with the sum-of-
squares framework, we use the POS3POLY
MATLAB library, in particular the function
min_poly_value_multi_general_trig_3_5 [24].
This function finds the minimum value of a polynomial (given
its coefficients) by a solving an SDP feasibility problem using
an interior point method; the maximum value is obtained by
calling the same function on −p. The per-iteration complexity
of this method is O(n4d).

For n = 7, POS3POLY required 75 seconds to obtain the
minimum value to within 3 × 10−3; n = 8 required 260
seconds and found the minimum to within of 2 × 10−3. The
n = 9 case exhausted the system memory and was too large
to solved on the workstation.

100 200 300 400 500 600 700

N

1.0

1.1

1.2

1.3

n = 5
n = 10
n = 15

n = 20
n = 32

100 200 300 400 500 600 700

N

-0.35

-0.30

-0.25

-0.22

Fig. 4: Upper and lower bounds for the Dirichlet kernel of 3
variables using Corollary 1.

This is meant to be an illustrative, but certainly not exhaus-
tive, comparison between the bounds presented in this paper
and the sum-of-squares framework. Sum-of-squares methods
are especially attractive if an exact solution is needed or
if the polynomial has sparse coefficients, in which case the
complexity can be dramatically reduced.

VI. CONCLUSION

We have proposed a fast and simple method to estimate
the extremal values of a multivariate trigonometric polynomial
directly from its samples. We have extended an existing
upper bound from univariate to multivariate polynomials, and
developed a strengthened upper bound and new lower bound
for real trigonometric polynomials. The lower bound provides
a new sufficient condition to certify global positivity of a
real multivariate trigonometric polynomial. Future work will
apply these results to the design of multidimensional perfect
reconstruction filter banks.
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