
1

Learning Filter Bank Sparsifying Transforms
Luke Pfister, Student Member, IEEE, Yoram Bresler, Fellow, IEEE

Abstract—Data is said to follow the transform (or analysis)
sparsity model if it becomes sparse when acted on by a linear
operator called a sparsifying transform. Several algorithms have
been designed to learn such a transform directly from data,
and data-adaptive sparsifying transforms have demonstrated
excellent performance in signal restoration tasks. Sparsifying
transforms are typically learned using small sub-regions of data
called patches, but these algorithms often ignore redundant
information shared between neighboring patches.

We show that many existing transform and analysis sparse
representations can be viewed as filter banks, thus linking the
local properties of patch-based model to the global properties
of a convolutional model. We propose a new transform learning
framework where the sparsifying transform is an undecimated
perfect reconstruction filter bank. Unlike previous transform
learning algorithms, the filter length can be chosen independently
of the number of filter bank channels. Numerical results indicate
filter bank sparsifying transforms outperform existing patch-
based transform learning for image denoising while benefiting
from additional flexibility in the design process.

Index Terms—sparsifying transform, analysis model, analysis
operator learning, sparse representations, perfect reconstruction,
filter bank, convolutional analysis operators.

I. INTRODUCTION

Countless problems, from statistical inference to geological
exploration, can be stated as the recovery of high-quality data
from incomplete and/or corrupted linear measurements. Often,
recovery is possible only if a model of the desired signal is
used to regularize the recovery problem.

A powerful example of such a signal model is the sparse
representation, wherein the signal of interest admits a repre-
sentation with few nonzero coefficients. Sparse representations
have traditionally been hand-designed for optimal properties
on a mathematical signal class, such as the coefficient decay
properties of a cartoon-like signal under a curvelet represen-
tation [1]. Unfortunately, these signal classes do not include
the complicated and textured signals common in applications;
further, it is difficult to design optimal representations for high
dimensional data. In light of these challenges, methods to learn
a sparse representation, either from representative training data
or directly from corrupted data, have become attractive.

We focus on a particular type of sparse representation, called
transform sparsity, in which the signal x ∈ RN satisfies Wx =
z+η. The matrix W ∈ RK×N is called a sparsifying transform
and earns its name as z ∈ RK is sparse and ‖η‖2 is small [2].
Of course, a W that is uniformly zero satisfies this definition
but provides no insight into the transformed signal. Several
algorithms have been proposed to learn a sparsifying transform
from data, and each must contend with this type of degenerate
solution. The most common approach is to ensure that W is

This work was supported in part by the National Science Foundation (NSF)
under Grants CCF 1018660 and CCF-1320953.

left invertible, so that Wx is uniformly zero if and only if x
is uniformly zero. Such a matrix is a frame for Rn.

In principle, we can learn a sparse representation for any
data represented as a vector, including data from genomic
experiments or text documents, yet most research has focused
on learning models for spatio-temporal data such as images.
With these signals it is common to learn a model for smaller,
possibly overlapping, blocks of the data called patches. We
refer to this type of model as a patch-based model, while we
call a model learned directly at the image level an image-based
model. Patch-based models tend to have fewer parameters
than an unstructured image-based model, leading to lower
computational cost and reduced risk of overfitting. In addition,
an image contains many overlapping patches, and thus a model
can be learned from a single noisy image [3].

Patch-based models are not without drawbacks. Any patch-
based W learned using the usual frame constraints must have
at least as many rows as there are elements in a patch, i.e. W
must be square or tall. This limits practical patch sizes as W
must be small to benefit from a patch-based model.

If our ultimate goal is image reconstruction, we must be
mindful of the connection between extracted patches and
the original image. Requiring W to be a frame for patches
ignores this relationship and instead requires that each patch
can be independently recovered. Yet, neighboring patches can
be highly correlated- leading us to wonder if the patch-based
frame condition is too strict. This leads to the question at the
heart of this paper: Can we learn a sparsifying transform that
forms a frame for images, but not for patches, while retaining
the computational efficiency of a patch-based model?

In this paper, we show that existing sparsifying transform
learning algorithms can be viewed as learning perfect recon-
struction filter banks. This perspective leads to a new approach
to learn a sparsifying transform that forms a frame over
the space of images, and is structured as an undecimated,
multidimensional filter bank. We call this structure a filter
bank sparsifying transform. We keep the efficiency of a patch-
based model by parameterizing the filter bank in terms of a
small matrix W . In contrast to existing transform learning
algorithms, our approach can learn a transform corresponding
to a tall, square, or fat W . Our learned model outperforms
earlier transform learning algorithms while maintaining low
cost of learning the filter bank and the processing of data
by it. Although we restrict our attention to 2D images, our
technique is applicable to any data amenable to patch-based
methods, such as 3D imaging data.

The rest of the paper is organized as follows. In Section II
we review previous work on transform learning, analysis learn-
ing, and the relationship between patch-based and image-based
models. In Section III we develop the connection between
perfect reconstruction filter banks and patch-based transform

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2018.2883021

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

learning algorithms. We propose our filter bank learning algo-
rithm in Section IV, describe denoising algorithms in Section
V, and present numerical results in Section VI. In Section VII
we compare our learning framework to the current crop of
deep learning inspired approaches, and conclude in Section
VIII.

II. PRELIMINARIES

A. Notation

Matrices are written as capital letters, while general linear
operators are denoted by script capital letters such as A.
Column vectors are written as lower case letters. The i-th
component of a vector x is xi. The i, j-th element of a matrix
A is Aij . We write the j-th column of A as A:,j , and Ai,: is
the column vector corresponding to the transpose of the i-th
row. The transpose and Hermitian transpose are AT and A∗,
respectively. Similarly, A∗ is the adjoint of the linear operator
A. The n×n identity matrix is In. The n-dimensional vectors
of ones and zeros are written as 1n and 0n, respectively. For
x ∈ RN , the diagonal matrix ddiag (x) ∈ RN×N has the
entries of x along its diagonal. The convolution of signals x
and y is written x ∗ y. For vectors x, y ∈ RN , the Euclidean
inner product is 〈x, y〉 =

∑N
i=1 xiyi and the Euclidean norm is

written ‖x‖2. The vector space of matrices RM×N is equipped
with the inner product 〈X,Y 〉 = trace

(
XTY

)
; the Frobenius

norm is written ‖X‖F . When necessary, we indicate the vector
space on which the inner product is defined; e.g. 〈x, y〉RN .

B. Transform Sparsity

Recall that a signal x ∈ RN satisfies the transform sparsity
model if there is a matrix W ∈ RK×N such that Wx =
z + η, where z is sparse and ‖η‖2 is small. The matrix W is
called a sparsifying transform and the vector z is a transform
sparse code. Given a signal x and sparsifying transform W ,
the transform sparse coding problem is

arg min
z

1

2
‖Wx− z‖22 + νψ(z) (1)

for a sparsity promoting functional ψ. Exact s-sparsity can be
enforced by selecting ψ to be the indicator function over the
set of s-sparse vectors. We recognize (1) as the evaluation of
the proximal operator of ψ, defined as

proxψν (t) = arg min
z

1

2
‖t− z‖22 + νψ(z), (2)

at the point t = Wx. Transform sparse coding is often cheap
as the proximal mapping of many sparsity penalties can be
computed cheaply and in closed form. For instance, when
ψ(z) = ‖z‖0, then z = proxψν (Wx) is computed by setting
zi = [Wx]i whenever |[Wx]i|2 > ν2, and setting zi = 0
otherwise. This operation is called hard thresholding.

Several methods have been proposed to learn a sparsifying
transform from data, including algorithms to learn square
transforms [2], orthonormal transforms [4], structured trans-
forms [5], and overcomplete transforms consisting of a stack of
square transforms [6], [7]. Degenerate solutions are prevented
by requiring the rows of the learned transform to constitute

a well-conditioned frame. In the square case, the transform
learning problem can be written

min
W,Z

1

2
‖WX − Z‖2F + ψ(Z) +

1

2
‖W‖2F − µ log |detW | (3)

where X is a matrix whose columns contain training signals
and ψ is a sparsity-promoting functional. The first term ensures
that the transformed data, WX , is close to the matrix Z,
while the second term ensures that Z is sparse. The remaining
terms ensure that W is full rank and well-conditioned [2].
Square sparsifying transforms have demonstrated excellent
performance in image denoising, magnetic resonance imaging,
and computed tomographic reconstruction [8]–[11].

C. Analysis sparsity

Closely related to transform sparsity is the analysis model.
A signal x ∈ RN satisfies the analysis model if there is a
matrix Ω ∈ RK×N , called an analysis operator, such that
Ωx = z is sparse. The analysis model follows by restricting
η = 0K in the transform sparsity model.

A typical analysis operator learning algorithm is of the form

min
Ω
ψ(ΩX) + J(Ω) (4)

where X are training signals, ψ is a sparsity promoting
functional, and J is a regularizer to ensure the learned Ω is
informative. In the Analysis K-SVD algorithm, the rows of
Ω are constrained to have unit norm, but frame constraints
are the most common [12]. Yaghoobi et al. observed that
learning an analysis operator with q > K rows while using a
tight frame constraint resulted in operators consisting of a full
rank matrix appended with q −K uniformly zero rows. They
instead proposed a uniformly-normalized tight frame (UNTF)
constraint, wherein the rows of Ω have equal `2 norm and
constitute a tight frame [13]–[15].

Hawe et al. utilized a similar set of constraints in their
GeOmetric Analysis operator Learning (GOAL) framework
[16]. They constrained the learned Ω to the set of full column
rank matrices with unit-norm rows and solved the optimization
problem using a manifold descent algorithm.

Transform and analysis sparsity are closely linked. Indeed,
using a variable splitting approach (e.g. Z = ΩX) to solve
(4) leads to algorithms that are similar to transform learning
algorithms [13]–[15]. The relationships between the transform
model, analysis model, and noisy variations of the analysis
model have been explored [2]. We focus on the transform
model because the proximal interpretation of sparse coding fits
nicely within a filter bank interpretation (see Section III-F).

D. From patch-based to image-based models

A link between patch-based and image-based models can
be made using the Field of Experts (FoE) model proposed by
Roth and Black [17]. They modeled the prior probability of
an image as a Markov Random Field (MRF) with overlapping
“cliques” of pixels that serve as image patches. Using the so-
called Product of Experts framework, a model for the prior
probability of an image patch is expressed as a sparsity-
inducing potential function applied to the inner products

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2018.2883021

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

between multiple ’filters’ and the image patch. A prior for
the entire image is formed by taking the product of the prior
for each patch and normalizing.

Continuing in this direction, Chen et. al proposed a method
to learn an image-based analysis operator using the FoE
framework using a bi-level optimization formulation [18].
This approach was recently extended into an iterated filter
bank structure called a Trainable Nonlinear Reaction Diffusion
(TNRD) network [19]. Each stage of the TNRD network
consists of a set of analysis filters, a channelwise nonlinearity,
the adjoint filters, and a direct feed-forward path. The filters,
nonlinearity, and feed-forward mixing weights are trained in
a supervised fashion. The TNRD approach has demonstrated
state of the art performance on image denoising tasks.

The TNRD and FoE algorithms are supervised and use the
filter bank structure only as a computational tool. In contrast,
our approach is unsupervised and uses the theory of perfect
reconstruction filter banks to regularize the learning problem.

Cai et al. developed an analysis operator learning method
based on a filter bank interpretation of the operator [20].
The operator can be thought to act on images, rather than
patches. Their approach is fundamentally the same as learning
a square, orthonormal, patch-based sparsifying transform [4].
In contrast, our approach does not have these restrictions: we
learn a filter bank that is a frame for images, and corresponds
to a tall, fat, or square patch-based transform.

These methods fall under the analysis paradigm. In Sec-
tion III we show that patch-based analysis models naturally
induce a image-based model. In contrast, synthesis patch-
based models do not directly lead to an image based model.
Figueiredo studied this dichotomy between patch-based syn-
thesis and analysis priors and proposed a method for image-
based denoising using patch-based synthesis methods [21].

Image-based modeling using synthesis sparsity can be im-
plemented in an entirely different manner by imposing shift-
invariance properties on the synthesis dictionary [22]–[25].
Briefly, the goal of convolutional dictionary learning (CDL)
is to find a set of filters, {di}Nci=1, such that the training signals
can be modeled as y =

∑Nc
i=1 di ∗ ai, where the ai are sparse.

Here, y is an image, not a patch. The filters di are required
to have compact support so as to limit the number of free
parameters in the learning problem. The desired convolutional
structure can be imposed by writing the convolution in the
frequency domain, but care must be taken to ensure that the
di remain compactly supported. For further details, see the
recent reviews [24], [25].

Finally, Muramatsu et al. proposed an approach for the de-
sign of multidimensional, multirate, nonseparable, overlapped
linear phase perfect reconstruction synthesis filter banks [26]–
[28]. We will refer to a dictionary designed in this manner as a
(synthesis) Non-Separable Oversampled Lapped Transforms,
or NSOLT. Despite using the synthesis sparsity model, the
NSOLT design problem shares more in common with our
proposed filter bank sparsifying transform learning than the
usual CDL problem. We further discuss the NSOLT structure
in Section III-D after the language of polyphase matrices
has been established. Differences between NSOLT and our
proposed method are discussed in Section IV-D.

In the next section, we show that patch-based analysis and
transform models, in contrast to synthesis models, are naturally
endowed with a convolutional structure.

III. FROM PATCH-BASED TRANSFORMS TO FILTER BANKS

In this section, we illustrate the connections between patch-
based sparsifying transforms and multirate finite impulse re-
sponse (FIR) filter banks. The link between patch-based anal-
ysis methods and convolution has been previously established,
but used only as a computational tool [17], [18], [20], [29],
[30]. Our goal is to illustrate how and when the boundary con-
ditions, patch stride, and a patch-based sparsifying transform
combine to form a frame over the space of images.

A. Frames, Patches, and Images
A set of vectors {ωi}Mi=1 in Rm is a frame for Rm if there

exists 0 < A ≤ B <∞ such that

A‖y‖22 ≤
M∑
j=1

|〈y, ωi〉|2 ≤ B‖y‖22 (5)

for all y ∈ Rm [31]. Equivalently, the matrix Ω ∈ RM×m,
with i-th row given by ωi, is left invertible. The frame bounds
A and B correspond to the smallest and largest eigenvalues
of ΩTΩ, respectively. The frame is tight if A = B, and in
this case ΩTΩ = AIn. The condition number of the frame is
the ratio of the frame bounds, B/A. The ωi are called frame
vectors, and the matrix Ω implements a frame expansion.

Consider a patch-based model using K × K (vectorized)
patches from an N × N image. We call RK2

the space
of patches and RN×N the space of images. In this setting,
transform learning algorithms find a W ∈ RNc×K2

with rows
that form a frame for the space of patches [2], [4]–[7].

We can extend this W to a frame over the space of images
as follows. Suppose the rows of W form a frame with frame
bounds 0 < A ≤ B. Let Rj : RN×N → RK2

be the linear
operator that extracts and vectorizes the j-th patch from the
image, and suppose there are M such patches. So long as each
pixel in the image is contained in at least one patch, we have

‖x‖2F ≤
M∑
j=1

‖Rjx‖22 ≤M‖x‖2F (6)

for all x ∈ RN×N . Letting wi = Wi,: denote the i-th row of
W , we have for all x ∈ RN×N

M∑
j=1

Nc∑
i=1

∣∣〈wi,Rjx〉∣∣2 ≥ M∑
j=1

A‖Rjx‖22 ≥ A‖x‖2F , (7)

M∑
j=1

Nc∑
i=1

∣∣〈wi,Rjx〉∣∣2 ≤ B M∑
j=1

‖Rjx‖22 ≤MB‖x‖2F . (8)

Because 〈wi,Rjx〉RK2 = 〈R∗jwi, x〉RN×N , it follows that the
collection

{
R∗jwi

}Nc,M
i=1,j=1

forms a frame for the space of
images with bounds 0 < A ≤ MB. Thus, every frame over
the spaces of patches corresponds to a frame over the space
of images. Next, our goal is to determine when the patch
extraction operators and the transform, W , form a frame for
the space of images but not the space of patches.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2018.2883021

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

B. Patch-based Sparsifying Transforms as Filter Banks

We consider two ways to represent applying the transform
W ∈ RNc×K2

to the image x ∈ RN×N . The usual approach is
to form the patch matrix X ∈ RK2×M2

with j-th columnRjx,
as illustrated in Fig. 1a. We call the spacing between adjacent
extracted patches the stride and denote it by s. The extracted
patches overlap when s < K and are disjoint otherwise. We
assume the stride is the same in both horizontal and vertical
directions and evenly divides N . The number of patches, M2,
depends on the boundary conditions and patch stride; e.g.
M2 = N2/s2 if periodic boundary conditions are used. The
patch matrix for the transformed image is WX ∈ RNc×M2

.
Our second approach eliminates patches and their vectoriza-

tion by viewing WX as the output of a multirate filter bank
with 2D FIR filters and input x. Let

H : RN×N → RNc ⊗ RM×M (9)

be this filter bank operator, which transforms an N×N image
into a three-dimensional array formed as a stack of Nc output
images, each of size M ×M .

We build H from a collection of downsampled convolution
operators. For i = 1, 2, . . . Nc, we define the i-th channel
operator Hi : RN×N → RM×M such that [Hix]a,b =
[hi ∗ x]sa,sb. The stride s dictates the downsampling level,
and the patch extraction boundary conditions determine the
convolution boundary conditions; in particular, if periodic
boundary conditions are used, then Hi implements cyclic
convolution. The impulse response hi is obtained from the
i-th row of W as R∗1wi. This matrix consists of a K × K
submatrix embedded into the upper-left corner of an N ×N
matrix of zeros as illustrated in Fig. 1b. 1

Finally, we constructH by “stacking” the channel operators:
H =

∑Nc
i=1 ei⊗Hi, where ei is the i-th standard basis vector in

RNc and ⊗ denotes the Kronecker (or tensor) product. With
this definition, y = Hx =

∑
ei ⊗ Hix =

∑
ei ⊗ yi. The

filter bank structure is illustrated in Fig. 2. We refer to H
constructed in this form as a filter bank sparsifying transform.
The following proposition links WX and Hx:

Proposition 1. Let X ∈ RK2×M2

be a patch matrix for image
X , and let W ∈ RNc×K2

. The rows of WX can obtained by
passing x through the Nc channel, 2D FIR multirate analysis
filter bank H and vectorizing the channel outputs.

A proof for 1D signals is given in Appendix A. The proof
for 2D is similar, using vector indices.

Proposition 1 connects the local, patch-extraction process
and the matrix W to a filter bank operator that acts on images.
Unlike convolutional synthesis models, patch-based analysis
operators naturally have a convolutional structure.

Next, we investigate connections between the frame proper-
ties of H and the combination of W and the patch extraction
scheme. Our primary tool is the polyphase representation
of filter banks [32], [33]. Consider the image x as a 2D

1In the case of cyclic convolution, R∗
1w

i is exactly the impulse response
of the i-th channel, but only the nonzero portion of R∗

1w
i is the impulse

response when using linear convolution. In a slight abuse of terminology, we
call R∗

1w
i the impulse response in both instances.

1 2 3 4

5 6 7 8

9 10 11 12

→
1

2

5

6

R1x

3

4

7

8

R2x

9

10

1

2

R3x

11

12

3

4

R4x

Xx

(a)

1

2

3

4

wi

→
R∗1

1

3

0

2

4

0

0

0

0

hi

(b)

Fig. 1: (a) Construction of the patch matrix X ∈ R4×4 from
2×2 patches of x ∈ R3×4 using periodic boundary conditions
and a stride of 2. Note that the vectorized patch is “flipped”
from the natural ordering; i.e., the top-left pixel in the patch
is the final element of the vector. (b) Obtaining the impulse
response hi from wi.

R∗1w1
ysI H1x

x
R∗1w2

ysI H2x

...
...

...
...

R∗1wNc
ysI HNcx

H

Fig. 2: Analysis filter bank H generated by a sparsifying
transform W and stride length s.

sequence x[n1, n2] for 0 ≤ n1, n2 ≤ N − 1. The z-transform
of the (a, b)-th polyphase component of x is z-transform
X̂a,b(z) =

∑
n1,n2

x[n1 · s + a, n2 · s + b]z−n1
1 z−n2

2 of the
shifted and downsampled sequence, where z = [z1, z2] ∈
C2 and 0 ≤ a, b ≤ s − 1. The polyphase representation
for the sequence x is formed by stacking the polyphase
components in lexicographical order into a single X̂(z) =
[X0,0(z), . . . , Xs−1,s−1(z)]

T ∈ Cs2 .
The filter bank H has a polyphase matrix Ĥ(z) ∈ CNc×s2

formed by stacking the polyphase representations of each
channel into a row, and stacking the Nc rows. Explicitly,

Ĥ(z) =

Ĥ0

0,0(z) Ĥ0
0,1(z) . . . Ĥ0

s,s(z)

Ĥ1
0,0(z) Ĥ1

0,1(z) . . . Ĥ1
s,s(z)

...
...

. . .
...

ĤNc−1
0,0 (z) ĤNc−1

0,1 (z) . . . ĤNc−1
s,s (z)

 (10)

where Ĥi
a,b(z) is the (a, b)-th polyphase component of the i-

th filter in H. The entries of Ĥ(z) are, in general, bi-variate
polynomials in z = [z1, z2]. The output of the filter bank,
y = Hx, can be written in the polyphase domain as Ŷ (z) =
Ĥ(z)X̂(z), where the i-th element of the vector Ŷ (z) is the
z-transform of the i-th output channel.

Many important properties of H are tied to its polyphase
matrix. An analysis filter bank H is said to be perfect re-
construction (PR) if there is a (synthesis) filter bank G such
that GH = I, or in the polyphase domain Ĝ(z)Ĥ(z) = I . A

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2018.2883021

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

filter bank is PR if and only if Ĥ(z) is full column rank on
the unit circle [34]. A filter bank is said to be orthonormal if
H∗H = I, that is, the filter bank with analysis section H and
synthesis section H∗ is an identity mapping on RN×N . In the
polyphase domain, this corresponds to

Ĥ∗(z−1)Ĥ(z) = I, (11)

where the star superscript denotes Hermitian transpose and
z−1 = [z−1

1 , z−1
2] [32], [35]. A matrix satisfying (11) is

paraunitary, and Ĥ∗(z−1) is the paraconjugate of Ĥ(z).
A PR filter bank implements a frame expansion over the

space of images, and an orthonormal filter bank implements
a tight frame expansion over the same space [36], [37]. The
frame vectors are the collection of the shifts of the impulse
responses of each channel, and are precisely the collection{
R∗jwi

}
discussed in Section III-A. The link between patch-

based transforms and filter banks does not directly lead to
new transform learning algorithms, as the characterization and
construction of multidimensional PR filter banks is hard due to
the lack of a multidimensional spectral factorization theorem
[33], [38]–[40].

Next, we study we illustrate the connections between patch-
based sparsifying transforms and perfect reconstruction filter
banks as a function of the stride length. We show that in certain
cases the PR condition takes on a simple form.

C. Perfect Recovery: Non-overlapping patches

Consider s = K, so that the extracted patches do not over-
lap. Applying the sparsifying transform W to non-overlapping
patches is an instance of a block transform [41]. Block
transforms are found throughout in signal processing appli-
cations; for example, the JPEG compression algorithm. Block
transforms are viewed as a decimated FIR filter bank with
uniform downsampling by K in each dimension, consistent
with Proposition 1.

It is informative to view patch-based transform learning
algorithms through the lens of block transformations. Because
we downsample by K in each dimension, and the filters are
of size K × K, the polyphase matrix Ĥ(z) is constant in
(independent of) z and is equal to W . This gives a direct
connection between the PR properties of H, which acts on
images, and W , which acts on patches. Patch-based transform
learning algorithms enforce either invertibility of W (in the
square case) or invertibility of WTW (in the overcomplete
case), and thus H is PR. If W is orthonormal, so too is H.

D. Perfect Recovery: Partially overlapping patches

Next, consider patches extracted using a stride 1 < s < K.
While WX is no longer a block transformation, it is related
to a lapped transformation [41]. Lapped transforms aim to
reduce artifacts that arise from processing each block (patch)
independently by allowing for overlap between neighboring
blocks. Many lapped transforms, such as the Lapped Orthog-
onal Transform, the Extended Lapped Transform, and the
Generalized Lapped Orthogonal Transform [42], enjoy both
the PR property and efficient implementation.

Lapped transforms were designed for signal coding applica-
tions. The number of channels in the filter bank is decreased
as the degree of overlap increases, so that the number of
transform coefficients using a lapped transform is the same
as using a non-lapped transform. While redundancy may be
undesirable in certain coding applications, it aids the solution
of inverse problems by allowing for richer and more robust
signal models [43]. We allow the stride length to decrease
while keeping the number of channels fixed, and interpret
WX as a “generalized” lapped transform. When the stride
is less than K, W no longer corresponds to the polyphase
matrix of the filter bankH; instead, the polyphase matrix Ĥ(z)
will contain high-order, 2D polynomials. While the filter bank
may still be PR, the PR property is not directly implied by
invertibility of W .

We can learn a PR generalized lapped transform by enforc-
ing the more restrictive PR conditions for non-overlapping
patches, that is, invertibilty of WTW . When s = 1, this
technique is equivalent to cycle spinning, which was developed
to add shift-invariance to decimated wavelet transforms [44].
When 1 < s < K, we can interpret Hx as cycle spinning
without all possible shifts.

Muramatsu et al. proposed a different method to learn
a PR synthesis non-separable oversampled lapped transform
(NSOLT) [26]–[28]. The filter bank is designed such that each
channel consists of linear phase filters; thus each channel
consists of either symmetric or anti-symmetric filters. The
filter bank is parameterized by a certain lattice structure
that implicitly ensures the NSOLT implements a tight-frame
expansion and is thus PR. This lattice structure leads to a
particular factorization of the (paraunitary) polyphase matrix;
in two dimensions, we have Ĥ(z) = G1(z1)G2(z2)H0, where
Gi(zi) is a univariate polynomial matrix of specified order
and H0 is constant in z. Each of these matrices is further
parameterized to lead to a tractable optimization problem; see
[28] for details.

Patch-based sparsifying transforms and NSOLTs are both
parameterized in terms of a polyphase matrix, and thus lead
to filter banks with compactly supported filters. This is in
stark contrast to the usual convolutional dictionary learning
problems, where variable splitting methods are often used to
obtain both a convolutional structure and compactly supported
filters.

E. Perfect Recovery: Maximally overlapping patches

Finally, consider extracting maximally overlapping patches
by setting s = 1. The resulting filter bank H is undecimated
and the Gram operator H∗H is shift invariant. As there is no
downsampling, the polyphase representations of x and y are
the z-transforms of the sequences x and y. The polyphase ma-
trix of H is the column vector Ĥ(z) = [Ĥ1(z), . . . ĤNc(z)]T

where Ĥi(z) is the z-transform of hi = R∗1wi.
An undecimated linear convolution filter bank is PR if and

only if its filters have no common zeros on the unit circle;
i.e., each frequency must pass through at least one channel
of the filter bank [34]. When evaluated on the unit circle

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2018.2883021

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

the z-transform becomes the Discrete Time Fourier Transform
(DTFT), defined for h ∈ RK×K as

Ĥ(ω) =
K−1∑
n1=0

K−1∑
n2=0

h[n1, n2]e−jω1n1e−jω2n2 (12)

where ω = [ω1, ω2] with ω1, ω2 ∈ [0, 2π). Now, the polyphase
matrix is full rank on the unit circle if and only if

ϕ(ω) ,
Nc∑
i=1

∣∣∣Ĥi(ω)
∣∣∣2 > 0 ∀w1, w2 ∈ [0, 2π), (13)

where ϕ(ω) is the DTFT of the impulse response of H∗H and
is an even, real, non-negative, 2D trigonometric polynomial
with maximum component order K − 1. Explicitly,

ϕ(ω) =
K−1∑

n1=−K+1

K−1∑
n2=−K+1

h̃[n1, n2] cos(ω1n1) cos(ω2n2),

(14)
where the impulse response of h̃ is H∗H is the sum of the
channel-wise autocorrelations; that is,

h̃[n1, n2] =

Nc∑
i=1

∞∑
l1=−∞

∞∑
l2=−∞

hi[l1, l2]hi[l1 − n1, l2 − n2].

(15)
Direct verification of the PR condition (13) is NP-Hard for

K ≥ 2, underlining the difficulty of multidimensional filter
bank design [45], [46]. We sidestep the difficulty of working
with (13) by developing the PR condition when image patches
are extracted using periodic boundary conditions. The resulting
filter bank implements cyclic convolution. Afterwards, we
show that under certain conditions, the PR property of a cyclic
convolution filter bank implies the PR property of a linear
convolution filter bank constructed from the same filters.

1) Periodic Boundary Conditions / Cyclic Convolution: If
image patches are extracted using periodic boundary condi-
tions, the channel operators Hi : RN×N → RN×N implement
cyclic convolution and are diagonalized by the 2D Discrete
Fourier Transform (DFT). Let F be the orthonormal 2D-DFT
operator such that

(Fhi)[k] = N−1
K−1∑
n1=0

K−1∑
n2=0

hi[n1, n2]e−j
2πk1n1
N e−j

2πk2n2
N

(16)
for k = [k1, k2] and 0 ≤ k1, k2 < N ; that is, the length N
2D-DFT of the filter hi padded with N − K zeros in each
dimension. Define Di ∈ CN×N → CN×N as the operator
that multiplies pointwise by Fhi: for u ∈ CN×N , we have
(Diu)(k) = (Fhi)(k) · u(k). The cyclic convolution operator
Hi has eigenvalue decomposition F∗DiF . We can use this
channel-wise decomposition to find the spectrum of H∗H:

Lemma 1. The N2 eigenvalues of the undecimated
cyclic analysis-synthesis filter bank H∗H are given by∑Nc
i=1 |(Fhi)[k]|2 for k = [k1, k2] and 0 ≤ k1, k2 < N .

Proof. We have

H∗H =

Nc∑
i=1

(ei ⊗Hi)∗(ei ⊗Hi) =

Nc∑
i=1

H∗iHi

= F∗
(
Nc∑
i=1

D∗iDiF

)
= F∗DF

where (Du)[k] =
∑Nc
i=1 |(Fhi)[k]|2 · u[k].

The quantity |(Fhi)[k|]2 is the squared magnitude response
of the i-th filter evaluated at the DFT frequency k, and the
eigenvalues of H∗H are the sum over the Nc channels of these
squared magnitude responses. As the DFT consists of samples
of the DTFT, by Lemma 1 and (13), the eigenvalues of H∗H
can be seen to be samples of the trigonometric polynomial
ϕ(ω) over the set ΘN =

{(
2πk1

N , 2πk2

N

)
: 0 ≤ k1, k2 < N

}
.

Recall that H implements a frame expansion only if the
smallest eigenvalue of H∗H is strictly positive [31]. We have
the following PR condition for cyclic convolution filter banks:

Corollary 1. The undecimated cyclic filter bank H im-
plements a frame expansion for RN×N if and only if∑Nc
i=1 |(Fhi)[k]|2 > 0 for 0 ≤ k1, k2 < N . If H implements

a frame expansion, the upper and lower frame bounds are
mink

∑Nc
i=1 |(Fhi)[k]|2 and maxk

∑Nc
i=1 |(Fhi)[k]|2.

Whereas the PR condition for a linear convolution filter
bank must hold over the unit circle, the PR condition for cyclic
convolution filter bank involves only the N2 DFT frequencies.

The factorization H∗H = F∗DF also provides an easy way
to compute the (minimum norm) synthesis filter bank H† that
satisfies H†H = I. We have H† = (H∗H)−1H∗, and the
necessary inverse is given by (H∗H)−1 = F∗D−1F .

2) Return to Linear Convolution: We now want to link the
PR conditions for cyclic and linear convolution filter banks.
Recently, we have shown [47], [48] that the minimum value
of a real, multivariate trigonometric polynomial can be lower
bounded given sufficiently many uniformly spaced samples of
the polynomial, provided that the polynomial does not vary
too much over the sampling points.

Theorem 1 (Corollary 3, [48]). Let ϕ(ω) be a
real, non-negative, two-dimensional trigonometric
polynomial with maximum component order n. Define
ΘN =

{(
2πk1

N , 2πk2

N

)
: 0 ≤ k1, k2 < N

}
where N ≥ 2n + 1.

If κN ,
maxω∈ΘN

ϕ(ω)

minω∈ΘN
ϕ(ω) satisfies

κN ≤
N

n
− 1, (17)

then ϕ(ω) > 0 for all ω1, ω2 ∈ [0, 2π).

If ϕ(ω) is defined by (13), then κN is the frame condition
number of a cyclic convolution filter bank operating on N×N
images. Theorem 1 is the link between PR properties of cyclic
and linear convolution filter banks we desired, and we have
the following PR condition for linear convolution filter banks:

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2018.2883021

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

h1 proxψν (·)
Z1,:

h̄1

x
h2 proxψν (·)

Z2,:

h̄2 g
x̂

...
...

...
...

...
...

hNc proxψν (·)
ZNc,:

h̄Nc

H H†

Fig. 3: Analysis-synthesis filter bank generated by sparsifying
transform W and separable sparsity penalty ψ. Here, hi =
R∗1wi, the impulse response h̄i is the flipped version of hi,
and g is the impulse response for the filter (H∗H)−1.

Corollary 2. Let HC be an undecimated cyclic convolution
filter bank with K × K filters that operates on N × N
images, with frame condition number κN . Let H be a linear
convolution filter bank constructed from the same filters as
HC . Then H is PR if κN ≤ N

K−1 − 1.

Proof. Take n = K − 1 in Theorem 1.

Corollary 2 states that well-conditioned PR cyclic convolu-
tion filter banks, with filters that are short relative to image
size N , are also PR linear convolution filter banks.

The PR conditions of Corollaries 1 and 2 are significantly
more general than the patch-based PR conditions. For example,
W ∈ RNc×K2

can be left-invertible only if Nc ≥ K2. The PR
conditions of Corollaries 1 and 2 have no such requirements;
indeed, a single channel “filter bank” can be PR. Our PR
conditions are easy to check, requiring only the 2D DFT of
Nc small filters.

F. The role of sparsification

We have interpreted the transformed image patches WX as
the output of a filter bank. The sparse matrix Z in (1) can be
viewed as passing the filter bank output through a nonlinear
function implementing proxψν (WX). This interpretation is
particularly appealing whenever ψ is coordinate-wise separa-
ble, meaning ψ(z) =

∑
i ψ(zi). Then the transform sparse

code for the j-th channel depends only on the j-th filtered
channel and is given by proxψν (Hjx). The resulting nonlinear
analysis-synthesis filter bank is illustrated in Fig. 3. If the input
signal x is indeed perfectly sparsifiable by the filter bank (i.e.,
Hx = proxψν (Hx)), then the output of the analysis stage is
invariant to the application of the nonlinearity and the entire
system functions as an identity operator.

We can replace the usual soft or hard thresholding functions
by exotic nonlinearities, such as the firm thresholding function
[49] or generalized p-shrinkage functions [50]. These nonlin-
earities have led to marginally improved performance in image
denoising [18] and compressed sensing [51]. Alternatively,
we can abandon the interpretation of the nonlinearity as a
proximal operator and instead learn a custom nonlinearity for
each channel, either in a supervised setting [19], [52] or in an
unsupervised setting with a Gaussian noise model [53].

Filter bank sparsifying transforms share many similarities
with convolutional autoencoder (CAE) [54]. Both consist of a
filter bank followed by a channelwise nonlinearity. However,
in the case of a CAE, the “decoder” H† is typically discarded
and the output of the “encoder”, proxψν (Hx), is passed into
additional layers for further processing.

G. Principal Component Filter Banks

The previous sections have shown that transform learning
can be viewed as adapting a filter bank to sparsify our data.
A similar problem is the design of principal component filter
banks (PCFB). Let C denote a set of orthonormal filter banks,
such as Nc-channel filter banks with downsampling matrix M ,
and let x be a given input signal. A filter bank HP is said to
be a PCFB for the class C and the input x if, for any H ∈ C
and all m = 1, . . . , Nc,

m∑
i=1

a2
i ≥

m∑
i=1

b2i (18)

where ai and bi are the `2 norms of the i-th channel of HPx
and Hx, respectively [55]. A PCFB provides compaction
of the output energy into lower-indexed channels, and thus
minimal `2 error when reconstructing a signal from m < M
filtered components. The existence and design of PCFBs in 1D
is well studied [56]. However, the design of multidimensional
FIR PCFBs is again made difficult due to the lack of a multidi-
mensional spectral factorization theorem, although suboptimal
algorithms exist [57], [58].

There are superficial similarities between the design of
PCFBs and transform learning, especially when W is restricted
to be square and orthonormal. The sparsity of the transformed
signal implies a form of energy compaction. However, we
impose no constraints on location of non-zero coefficients
and thus the learned transform is unlikely to satisfy the
majorization property (18). Further, an orthogonal W matrix
induces an orthogonal filter bank only if non-overlapping
patches are used. The PCFB for such a block transformation
is known to be the Karhunen-Loeve transformation of the data
[59], from which the learned transform can differ substantially
[2]. Conversely, the energy majorization property (18) does not
imply sparsity of the channel outputs, and a PCFB will not,
in general, be a filter bank sparsifying transform.

IV. LEARNING A SPARSIFYING FILTER BANK

We briefly review methods to incorporate an adaptive spar-
sity model in the solution of inverse problems. We consider
two paradigms: in the “universal” paradigm, our sparsifying
transform H is learned off-line over a set of training data.
In the “adaptive” paradigm, the transform is learned during
the solution of the inverse problem, typically by alternating
between a signal recovery phase and a transform update phase.
For synthesis dictionary learning it has been reported that the
adaptive method typically works better for lower noise levels
while the universal method shines in high noise [3]. In both
paradigms, we learn sparsifying transform by minimizing a
function that is designed to encourage “good” transforms.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2018.2883021

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

A. Problem Formulation

We now develop a method to learn an undecimated filter
bank sparsifying transform that takes advantage of the flexi-
bility granted by the PR conditions of Corollaries 1 and 2. Let
x be a training signal, possibly drawn from a set of training
signals. We wish to learn a filter bank sparsifying transform
that satisfies four properties:
(D1) Hx should be sparse;
(D2) H should be left invertible and well conditioned;
(D3) H should contain no duplicated or uniformly zero filters;
(D4) H should have few degrees of freedom.
Properties (D1) – (D3) ensure our transform is “good” in that
it sparsifies the training data, is a well-behaved frame over the
space of images, and is not overly redundant. Property (D4)
ensures good generalization properties under the universal
paradigm and prevents overfitting under the adaptive paradigm.

As with previous transform learning approaches, we satisfy
(D1) by minimizing 1

2‖Hx − z‖22 + νψ(z) where ψ is a
sparsity-promoting functional. The first of term is called the
sparsification error, as it measures the distance between Hx
and its sparsified version, z.

We satisfy (D4) by writing the action of the sparsifying
transform on the image as WX , where W ∈ RNc×K2

and
X is formed by extracting and vectorizing K × K patches
with unit stride. This parameterization ensures that we have
the desired filter bank structure, and that the learned filters are
compactly supported and have only NcK2 free parameters.

This is a key difference between convolutional analysis-
based methods, such as ours, and synthesis-based convolu-
tional dictionary learning; learning a convolutional dictionary
requires careful parameterization to get both the desired con-
volutional structure and filters of compact support.

We emphasize that WX and Hx are equivalent modulo
a reshaping operation. Both expressions should be thought
of independently of the computational tool used to calculate
the results; WX can be implemented using Fourier-based fast
convolution algorithms, just as Hx can be implemented by
dense matrix-matrix multiplication. We further elaborate on
this point in Section IV-C. We choose to write the filter bank
application as WX so that we can express the sparsification
error directly in terms of W ; in particular, we have

f(W,Z, x) =
1

2
‖WX − Z‖2F , (19)

where the j-th row of Z ∈ RNc×N2

is the sparse code for
the j-th channel output. We can learn a transform over several
images by summing the sparsification error for each image.

We promote transforms that satisfy (D2) through the penalty
1
2

∑Nc
j=1‖Wj,:‖22 − log detH∗H. The log determinant term

ensures that no eigenvalues of H∗H become zero, while the
`2 norm term ensures that the filters do not grow too large.
This penalty can be written as

∑N2

j=1 λi − log λi, where the
λi are the eigenvalues of H∗H as given by Lemma 1. Our
proposed penalty serves the role of the final two terms of the
patch-based objective (3). The key difference is that the patch-
based regularizer acts on the singular values of W , while the
proposed regularizer acts on the singular values of H.

To satisfy (D4) we write the eigenvalues λi in terms of the
matrix W . Let F ∈ CN2×N2

denote the matrix that computes
the N ×N orthonormal 2D-DFT for a vectorized signal, and
let F̄ ∈ CN2×K2

represent the N × N 2D-DFT of a zero-
padded and vectorized K × K signal. The i-th column of
F̄WT contains the (vectorized) 2D-DFT of the i-th filter. Then
λi =

∑Nc
j=1

∣∣F̄WT
∣∣2
i,j

, and

log detH∗H =

N2
F∑

i=1

log

 Nc∑
j=1

∣∣F̄WT
∣∣
i,j

 , (20)

where the absolute value and squaring operations are taken
pointwise. We can reduce the computational and memory
burden of the algorithm by using smaller NF × NF DFTs,
provided that Corollary 2 implies the corresponding linear
convolution filter bank is PR. We take NF = 4K, which is
suitable for filter banks with condition number less than 3.

Similar to earlier work on analysis operator learning [13]–
[15], we found that our tight frame penalty often resulted
in transforms with many uniformly zero filters. We pre-
vent zero-norm filters by adding the log-barrier penalty∑Nc
j=1− log

(
‖Wj,:‖22

)
. The combined regularizer is written

as

J1(W) =
1

2

Nc∑
i=1

‖Wi,:‖22−
N2
F∑

i=1

log

 Nc∑
j=1

∣∣F̄WT
∣∣2
i,j

−

Nc∑
i=1

log
(
‖Wi,:‖22

)
. (21)

The following proposition (proved in Appendix B) indicates
that J1 promotes filter bank transforms that satisfy (D2).

Proposition 2. Let W] be a minimizer of J1, and let H be
the undecimated cyclic convolution filter bank generated by
the rows of W]. Then H implements a uniformly normalized
tight frame expansion over the space of images, with filter
squared norms equal to 2(1 + N2

F /Nc) and frame constant
2(1 +Nc/N

2
F).

Finally, we would like to discourage learning copies of the
same filter. To that end, we define the coherence between rows
i and j of W as

Γi,j(W) ,
〈Wi,:,Wj,:〉
‖Wi,:‖2‖Wj,:‖2

. (22)

One option is to apply a log barrier to the squared coherence
between each pair of filters [16]:

J2(W) =
∑

1≤i<j≤Nc

− log
(

1− (Γi,j(W))
2
)
. (23)

This penalty works well whenever the filters have small
support (K ≤ 8). For larger filters, we observed the algorithm
often learned filters with disjoint support that are shifted
versions of one another. These filters do not cause a large
value in (23), yet provide no advantage over a single filter.
We modify our coherence penalty to discourage filters that
differ by only a linear phase term by applying (23) to the
squared magnitude responses of our filters. This coherence

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2018.2883021

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

penalty naturally promotes zero-mean filters, as the coherence
between two non-zero-mean filters can be reduced simply by
removing their mean.

Our learning problem is written as

min
W,Z

f(W,Z, x) + µJ1(W) + λJ2 (W) + νψ(Z). (24)

The scalar µ > 0 controls the strength of the UNTF penalty
and should be large enough that the learned filter bank is well
conditioned, so that approximating the eigenvalues using NF×
NF DFTs remains valid. The non-negative scalar parameters λ
and ν control the emphasis given to the coherence and sparsity
penalties, respectively.

B. Optimization Algorithm

We use an alternating minimization algorithm to solve (24).
In the sparse coding step, we fix W and solve (24) for Z. In
the second stage, called the transform update step, we update
our transform W by minimizing (24) with fixed Z. We use
superscripts to indicate iteration number, and we take H(k) to
mean the filter bank generated using filters contained in the
rows of W (k).

The sparse coding step reduces to

Z(k+1) = arg min
Z

1

2
‖W (k)X − Z‖2F + νψ(Z) (25)

with solution Z(k+1) = proxψν
(
H(k)x

)
. Next, with Z(k+1)

fixed, we update W by solving

W (k+1) = arg min
W

f(W,Z(k+1), x) + µJ1(W) + λJ2 (W) .

(26)
Unlike the square, patch-based case, we do not have a closed-
form solution for (26) and we must resort to an iterative
method. The limited-memory BFGS (L-BFGS) algorithm
works well in practice. The necessary gradients are

∇W f(W,Z, x) = 2WXXT − 2XZT , (27)

∇W log detH∗H = 2WF̄ ∗ ddiag
(∣∣F̄WT

∣∣2 1Nc)−1

F̄, (28)

∂

Wr,s

Nc∑
i=1

log
(
‖Wi,:‖22

)
=

2Wr,s

‖Wr,:‖22
, (29)

∂J2(W)

∂Wr,s
=

Nc∑
i=1,i6=r

Wi,s[WWT]i,r −Wr,s[WWT]2i,r‖Wr,:‖−2
2

‖Wi,:‖22 · ‖Wr,:‖22 − [WWT]2i,r
.

(30)

C. Computational Considerations

The primary bottleneck in using L-BFGS to solve (26) is
the line search step, which requires multiple evaluations of
the objective function (24) with fixed Z. The cost of this
computation is dominated by evaluation of (19). With X and Z
fixed, we precompute and store the small matrices G = XXT

and Y = XZT . The sparsification residual is evaluated as

trace
(
WTWG

)
− 2 · trace (WY) + ‖Z‖2F (31)

and requires only small matrix-matrix products.
In the patch-based case, evaluating WX using dense matrix

multiplication requires O(NcK
2N2) floating point operations

(FLOPS). The filter bank structure of H naturally leads to
efficient calculation of Hx through the use of Fourier-based
convolution methods. For simplicity, we will restrict our
attention to radix-2 FFT algorithms and assume that both K
and N are powers of 2.

The usual Fourier-based circular convolution methods re-
quire adding zeros until both signals are of the same size.
In our case, we must extend each row of W to be of
length N . Passing the input signal through a single filter will
require O(NcN

2 logN) FLOPS, representing a K2/ log(N)
reduction over the patch-based case. For the typical sizes
of N = 512 and K = 8, this is roughly a factor of 7.
Importantly, using convolution to evaluateHx does not require
explicitly forming or storing the matrix X . The number of
multiplications needed to apply the analysis filter bank using
patch-based and Fourier approaches is plotted in Fig. 4

We also use convolution to accelerate calculation of (27).
The first term, XXT , is just the circular correlation of x
evaluated at the first K shifts in each direction and can be
calculated using FFTs at a cost of O(N2 log(N)). In contrast,
evaluating this gradient using a dense matrix multiply involv-
ing the image patch matrix scales as O(K4N2). Thus the
filter bank interpretation yields a savings of K4/ log(N). For
typical sizes of N = 512 and K = 8, this is a 450× reduction
in order. However, this term remains constant throughout the
iterations and must be computed only once.

Computing the product XZT is more complicated. The
matrix Z, while sparse, has no fixed sparsity pattern or
common structure. We must compute the product with each
row of Z independently using convolution. This requires a
forward FFT of length N for x and for each of the Nc rows
of Z, the necessary elementwise products, and finally the
inverse FFT of these products. All told, this operation will
scale like O(NcN

2 log(N)). In contrast, directly using dense
matrix multiplication scales as O(NcK

2N2). Unlike XXT ,
this term must be calculated each time z is updated.

The dominant computation in evaluating J1(W) is that of
F̄WT . This requires Nc separate 2D-DFTs of size NF ×NF ,
at a cost of O(NcN

2
F logNF).

Similarly, calculating the gradient of J1(W) is dominated
by the cost of (28). We first compute F̄WT . Then, we require
the multiplication of an N2

F × N2
F diagonal matrix by the

N2
F ×K2 matrix F̄ at a cost of O(N2

FK
2). Next, we take K2

separate NF ×NF 2D inverse FFTs, followed by the product
of Nc × K2 and K2 × K2 matrices. Together, ∇WJ1(W)
scales as O(K4Nc + (Nc + K2)N2

F log(NF)). The cost of
evaluating J2(W) and ∇J2(W) is O(N2

cK
2) and O(NcK

4),
respectively. These costs are summarized in Table I.

For many choices of ψ, the sparse coding step is cheap. For
instance, when ψ is the `0 norm, we need only to pass over
each element of Hx and set to zero all entries that are less
than the given threshold. This operation will cost O(NcN

2).
The necessary function and gradient evaluations consist of

basic linear algebra operations, such as matrix-matrix prod-
ucts, and elementwise function evaluations, such as log(·) or
|·|2. As such, our algorithm is easy to implement on a graphics
processing unit (GPU).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2018.2883021

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

As noted, we can implement the action of the filter bank,
Hx, using Fourier convolution methods, direct convolution
methods, or using the patch-based multiplication WX . The
best choice depends on computational platform (CPU vs
GPU), filter size, and dimensionality of training data. While
Fourier methods likely win on a CPU, patch-based multipli-
cation is well suited for GPU-based implementations. Finally,
note that we can limit the amount of memory consumed by
the algorithm by applying the filter bank in a channel-by-
channel (or row-by-row) fashion. This is useful when learning
a transform for higher dimensional data, as the matrix WX
may not fit in memory- for d-dimensional data the matrix WX
is of size NcNd, while a single row of WX is of size Nd.

D. Comparison with NSOLT

The closest analogue to our proposed filter bank design
algorithm is the Non-Separable Oversampled Lapped Trans-
form (NSOLT), as described in Section III-D. We briefly
draw distinctions between our proposed filter bank learning
algorithm and the design of multi-dimensional NSOLTs.

An immediate difference is that the NSOLT structure is
proposed for use as a synthesis filter bank. This is not
a meaningful distinction, though, as the designed NSOLT
implements a tight frame expansion, and thus the adjoint of
the NSOLT is itself a paraunitary analysis filter bank with
compactly supported FIR filters [34].

The true differences between our approach and the design
of NSOLTs lie in the structure of the filter bank. First, our
algorithm is only applicable to undecimated filter banks, while
NSOLTs can incorporate downsampling. Second, our approach
can learn any undecimated PR filter bank with compactly
supported FIR filters, whereas the NSOLT framework can
learn only a subset of paraunitary filter banks. This difference
manifests itself in both the structure and optimization of the
filter banks. Our filter banks are unstructured, and use special
regularizers to ensure the PR property holds. In our approach,
the frame bounds are indirectly controlled through the penalty
parameter µ. In contrast, the NSOLT uses a particular lattice
form that implicitly guarantees the learned filter bank is
paraunitary.

Further, NSOLTs are designed using a combination of
symmetric and anti-symmetric impulse responses to ensure
the filter bank is linear phase [26]–[28]. This constraint limits
the ability of individual NSOLT channels to capture structures
which are not strictly symmetric or anti-symmetric, such as
edges that are not strictly horizontal, vertical, or at an angle
of 45 degrees. Our undecimated filter banks do not have this
restriction.

V. APPLICATION TO IMAGE DENOISING

A preliminary version of our filter bank transform learning
framework has been applied in an “adaptive” manner for mag-
netic resonance imaging [60]. Here, we restrict our attention
to image denoising in the “universal” paradigm: we use a pre-
trained sparsifying filter bank, H to recover a clean image x∗

from a noisy copy, y = x∗ + e, where e ∼ N (0, σ2IN). We
consider two algorithms for image denoising.

Algorithm 1 Filter bank sparsifying transform learning

INPUT: Image x, Initial transform W (0)

1: Z(0) ← proxψν
(
H(0)x

)
2: k ← 0
3: repeat
4: W (k+1) ← arg minW f(W,x,Z(k)) + µJ1(W) +
λJ2(W)

5: Z(k+1) ← proxψν
(
H(k+1)x

)
6: k ← k + 1
7: until Halting Condition

2 4 8 16 32

Filter Length (K)

6

7

8

9

10

11

lo
g 1

0(
#M

U
L)

Filter bank (Fourier)
Patch based

Fig. 4: Number of multiplications needed to apply a square
filter bank (Nc = K2) to a 512 × 512 image using Fourier
and patch-based methods.

A. Iterative denoising

Our first denoising method is to solve a regularized inverse
problem using a transform sparsity penalty, written as

min
x,z

λr
2
‖y − x‖22 +

1

2
‖Hx− z‖22 + νψ(z), (32)

where λr > 0 controls the regularization strength. We solve
this problem by alternating minimization: we update z for
fixed x, and then update x with z fixed. This procedure is
summarized as Algorithm 2. The eigenvalue decomposition
of Lemma 1 provides an easy way to compute the necessary
matrix inverse for cyclic convolution filter banks. For linear
convolution filter banks, we use Lemma 1 to implement a
circulant preconditioner [61].

Algorithm 2 has three key parameters. The regularization
parameter λr reflects the degree of confidence in the noisy
observations y and should be chosen inversely proportional
to the noise variance. The sparsity of the transform sparse
code is controlled by ν. The value of ν when denoising an
image need not be the same as ν during the learning procedure
and should be proportional to σ. The choice of both ν and
λr depends on the final parameter: the number of iterations
used during denoising. Empirically, we’ve found that using
ceil {σ · 255/10} iterations works well.

B. Denoising by Transform-domain Thresholding

We also consider a simpler algorithm, inspired by the
transform domain denoising techniques of old. We can form a
denoised estimate by passing y through the system in Fig. 3;
that is, computing

H†proxψν (Hy) . (33)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2018.2883021

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

Penalty Evaluation Gradient
f(W,Z, x) O(NcN2 log(N)) O(NcK4 +NcN2 log(N))

J1(W) O
(
NcN2

F log(NF) +N2
FK

2 +NcK2
)

O(K4Nc + (Nc +K2)N2
F log(NF)

J2(W) O
(
N2

cK
2
)

O(NcK4)

TABLE I: Computational cost for function and gradient computation.

Algorithm 2 Iterative denoising with filter bank transform

INPUT: Noisy signal y, Learned filter bank transform H
1: k ← 0
2: repeat
3: z(k+1) ← proxψν

(
Hx(k)

)
4: x(k+1) ← (H∗H+ λrI)−1(H∗z(k) + λry)
5: k ← k + 1
6: until Halting Condition

Fig. 5: Training images.

This approach simplifies denoising by eliminating two param-
eters from Algorithm 2: the number of iterations and λr.

Denoising in this manner is sensible because of the prop-
erties we have imposed on H. Noise in the signal will not
be sparse in the transform domain and thus will be reduced
by the nonlinearity. In contrast, the image will be sparse in
the transform domain, and significant components will pass
through the nonlinearity with little change. The left-inverse is
guaranteed to exist, and as H must be well-conditioned, any
noise remaining after the nonlinearity will not be strongly am-
plified byH†. Finally, ifH has low coherence, the transformed
noise He will not be correlated across channels, suggesting
that a channelwise nonlinearity is sufficient. A multi-channel
nonlinearity may be beneficial if the transform is coherent.

UnlessH implements a tight frame expansion, the minimum
norm synthesis filters comprising H† will not be compactly
supported; indeed, if H is a linear convolution filter bank,
then the minimum-norm synthesis filter bank will have infinite
duration impulse response filters [34]. Fortunately, if H is
well-conditioned, then the minimum-norm synthesis filters will
have an exponentially decaying impulse response and can thus
be well approximated by FIR filters [62]. Alternatively, one
can search for a (non-minimum-norm) left inverse of H that
consists of FIR filters [63].

VI. EXPERIMENTS

We implemented GPU versions of our algorithms using
NumPy 1.11.3 and SciPy 0.18.1. Our code interfaces with
Python through PyCUDA and scikits.cuda, and we conducted
experiments on an NVidia Maxwell Titan X GPU.

We conducted training experiments using the five training
images in Fig. 5. Each image, in testing and training, was
normalized to have unit `2 norm. Unlike many patch-based

(a) (b)

Fig. 6: Comparing initializations for 64 channel filter bank
with 8×8 filters. (a) DCT Initialization; maximum coherence:
0.9 (b) Random initialization; maximum coherence: 0.85. The
filters in (b) have been ordered to match those in (a).

100 101 102 103

Iteration

1400

1500

1600

1700

1800

1900

2000
Objective

Random DCT

200 500 1000

1491.3

1491.5

100 101 102 103

Iteration

20

30

40

50

60
Sparsification

Random DCT

200 500 1000

17.0

17.5

Fig. 7: Plots of objective function (24) and sparsification error
1
2‖Hx− z‖

2
2 while training the filter banks shown in Fig. 6.

methods, we do not subtract the DC (mean) value of the image
prior to training. Unless otherwise specified, our transforms
were learned using 1000 iterations of Algorithm 1 with
parameters µ = 3.0, λ = 7 × 10−4, and ν = 5.5 × 10−3.
Sparsity was promoted using an `0 penalty, for which the
prox operator corresponds to hard thresholding. For each filter
bank, we compute the coherence between each pair of squared
magnitude filter responses and report the largest value; that is,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2018.2883021

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

(a) (b)

Fig. 8: Examples of learned 16 × 16 filters. (a) Filter im-
pulse responses; (b) Magnitude frequency responses. The zero
frequency (DC) is located at the center of each small box.
Maximum coherence of learned filter bank: 0.88.

(a) (b) (c)

Fig. 9: Adaptivity of filters. (a) Training image; (b) Learned
filter impulse responses. (c) Magnitude frequency responses.
Zero frequency (DC) is located at the center of each small
box. Maximum coherence of learned filter bank: 0.75.

max1≤i<j<Nc Γi,j(
∣∣F̄WT

∣∣2).
The initial transform H(0) must be feasible, i.e. left-

invertible. Random Gaussian and DCT initializations work
well in practice. We learned a 64 channel filter bank with
8× 8 filters using these initializations. The learned filters are
shown in Fig. 6. The evolution of the objective function and
sparsification error are shown in Fig. 7. The learned filters
appear similar, reach nearly the same objective value, and
perform equally well in sparsifying the data set.

More examples of learned filters and their magnitude fre-
quency responses are shown in Fig. 8. We show a subset of
channels from a filter bank consisting of 16 × 16 filters and
128 channels. This transform is 2× under-complete if viewed
as a patch-based transform. The ability to choose longer filters
without increasing the number of channels is a key advantage
of our framework over patch-based transform learning.

A. Image denoising
We investigate the denoising performance of the filter bank

sparsifying transforms as a function of number of channels,
Nc, and filter size, K, using our two algorithms. We refer
to Filter Bank Sparsifying Transform with Nc channels and
K ×K filters as FBST-Nc-K.

We evaluate our filter bank learning formulation using 64,
128, and 256 channels with 8× 8 and 16× 16 filters. During

the denoising stage, we set ν = 10−4 × 0.1σ and λr was
adjusted for the particular noise level.

We also evaluate image denoising using filters learned with
the square, patch-based transform learning algorithm [2]. We
used 8 × 8 and 16 × 16 image patches to learn a patch-
based transform W . We used the rows of W to generate an
undecimated filter bank and used this filter bank to denoise
using Algorithm 2 and (33). The filter bank implements cyclic
convolution and image patches are extracted using periodic
boundary conditions. Following the convention used to denote
filter bank sparsifying transforms, we refer to a Patch-Based
Sparsifying Transform with K ×K patches as PBST-K2-K.
We keep the number of channels Nc = K2 explicit to facilitate
comparison with filter bank sparsifying transforms. Observe
that for a given K, FBST-K2-K and PBST-K2-K differ only
in the regularizer and learning algorithm used; in particular,
both transforms have the same number of design parameters.
All sparsifying transforms were trained under the “universal”
paradigm using all possible (maximally overlapping) patches
extracted from the set of images shown in Fig. 5.

We also include comparisons with 2D NSOLTs trained
using the SaivDr2 MATLAB package. The NSOLTs were
trained using the images Fig. 5. We investigate denoising
performance as a function of polyphase order, downsampling
ratio, and number of channels. We refer to an NSOLT with
downsampling matrix 2I , 48 channels, and polyphase order
4 as NSOLT-D2-C48-O4. We consider only NSOLTs with
an identical number of symmetric and antisymmetric chan-
nels, thus NSOLT-D2-C48-O4 has 24 symmetric and 24 anti-
symmetric channels.

Image denoising using NSOLTs is accomplished by solving
arg minx‖y−x‖2/2+λ‖Hx‖1, where H denotes the NSOLT
operator and λ is tuned for best denoising performance on an
image-by-image basis. The optimization problem itself was
solved using FISTA [64]. We also attempted denoising by
using Algorithm 2 with an `0 penalty, but found that `1 +
FISTA gave the best results. We used two tree levels for each
NSOLT.

While our main interest is comparing the denoising perfor-
mance of FBST versus PBST, we also compare against several
competing image denoising methods. These are divided into
two camps. The first group includes two methods based on
non-local self-similarity: BM3D [65] and WNNM [66].

The second group includes a handful of MRF learning-
based methods. These can be interpereted as either patch-
based analysis or convolutional analysis models and are thus
local in nature. We include EPLL-GMM [67], the Field
of Experts (FoE) [17], [68], and the Cascade of Shrinkage
Fields (CSF) [52]. While these methods have a convolutional
structure– indeed, FoE and CSF are closely related to our
nonlinear analysis-synthesis filter bank– they must be trained
in a supervised in nature and do not impose any perfect
reconstruction property on the resulting filters. We use the
default parameters in the FoE and CSF packages. For FoE,
we use 3× 3 filters. For CSF we use 5× 5 and 7× 7 filters;

2Available: https://github.com/msiplab/SaivDr

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2018.2883021

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

in both cases, we use 5 stages with 25 channels. We trained
the CSF to operate at our noise levels.

Finally, we include the recent STROLLR denoising algo-
rithm, which uses both square patch-based transform learning
and non-local self-similarity [69], [70]. STROLLR is an un-
supervised method and the transform learning step uses the
“adaptive” paradigm. We used 8 × 8 patches, resulting in a
64× 64 sparsifying transform.

Our metric of interest is the peak signal-to-noise ra-
tio (PSNR) between the reconstructed image x and the
ground truth image x∗, defined in decibels as PSNR =
20 log10(N2/‖x − x∗‖2). In the Supplemental Material, we
also report the (mean) Structural Similarity (SSIM) index, a
perceptual image metric that has been shown to be consistent
with qualitative visual appearance [71]. The SSIM takes values
between 0 and 1, with higher values indicating better quality.
We evaluate the denoising performance of our algorithm on
the grayscale barbara, man, peppers, baboon and boat
images.

Table II collects the reconstruction PSNR for each test
image, in addition to the mean PSNR for the entire test set.
The SSIM is collected in the Supplemental Material. In both
tables, the best value is written in bold with gray shading; the
second best value is shaded gray with no bold. Here, FBST-
64-8 indicates a 64 channel filter bank with 8×8 filters where
we denoise using transform domain thresholding (33), while
FBST-128-16-I indicates the use of a 128 channel filter bank
with 16×16 filters and denoising using the iterative Algorithm
2.

When averaged over the entire test set, FBST-64-8 out-
performs PBST-64-8 by between 0.2 − 0.3 dB. As the only
difference in these two transforms is the regularizer used
during learning, we attribute this improvement to the change
from a patch-based to an image-based point of view.

Using 1000 iterations to learn a 196 channel filter bank with
16 × 16 filters with Algorithm 1 took roughly 5 minutes on
our GPU. In contrast, using the same GPU to learn a square
256× 256 patch-based transform over the same data took less
than one minute. This illustrates the efficiency of the closed-
form transform update step in the patch-based case [4]. Our
slower learning algorithm is offset by the ability to choose
Nc < K2, and this leads to faster application of the learned
transform. Comparing FBST-128-16-I and PBST-256-16-I, the
image-based transform outperforms the patch-based transform
by up to 0.3 dB despite containing half as many channels.

Table II shows that, on average, FBST performs slightly
better than the MRF-based methods (EPLL/CSF/FoE), but
worse than non-local methods, especially for σ = 30. Note that
STROLLR is competitive with the other non-local methods.
Combining the flexibility of our proposed filter bank sparsify-
ing transforms with STROLLR is left for future work. NSOLT
gives the lowest denoising performance. We conjecture that
the linear phase constraints severely limit the representation
power of the NSOLT. Further, it is difficult to train a large
NSOLT: training NSOLT-D2-C24-O2 required several days on
our workstation.

The performance of shorter or longer filters is dependent
on the image. For most images, the 8 × 8 filters performed

as well or better than the longer filters, but we see significant
improvement when using long filters on barbara. The MRF-
based methods perform poorly on this image, with the FBST-I
methods gaining well over a full dB of PSNR improvement.
In contrast, the MRF methods outperform FBST on man.

Increasing the number of channels beyond the filter size
K2 provides marginal improvement. For low noise, denois-
ing by transform-domain thresholding and iterative denoising
using Algorithm 2 perform equally well. As the noise level
increases, the iterative denoising algorithm outperforms the
simpler thresholding scheme.

B. Learning on subset of patches

One advantage of patch-based formulation is that the model
can be trained using a large set images by randomly selecting a
few patches from each image. We can use the same approach
when learning a sparsifying filter bank: the data matrix X
in (19) is formed by extracting and vectorizing patches from
many images. We can no longer view WX as a convolution.

We learned a transform using 200, 000 randomly extracted
patches from the training images in Fig. 5. The learned
transform performed nearly identically to a transform learned
using all patches from the training images.

C. Image Adaptivity

To test the influence of the training set, we learned a filter
bank using 2562 patches of size 8× 8 chosen at random from
the 200 training images in the BSDS300 training set [72].
The learned filter bank consists of Gabor-like filters, much
like filter banks learned from the images in Fig. 5. Gabor-like
filters are naturally promoted by the regularizers J1 and J2:
their narrow support in the frequency domain leads to low
coherence, and their magnitude responses can tile frequency
space leading to a well-conditioned transform. As expected,
all but one filter has zero-mean.

We wondered if we have regularized our learning problem
so strongly that the data no longer plays a role. Fortunately,
this is not so: Fig. 9 illustrates a 64 channel filter bank of
16×16 filters learned from a highly symmetric and geometric
image. The learned filters include oriented edge detectors, as in
the natural image case, but also filters with a unique structure
that sparsify the central region of the image. Note that most of
our learned filters in Figs. 8 and 9 are not strictly symmetric
or antisymmetric, and thus cannot be captured by individual
NSOLT channels.

VII. REMARKS

Adaptive analysis/transform sparsity based image denoising
algorithms can be coarsely divided into two camps: supervised
and unsupervised. In both cases, one learns a signal model by
minimizing an objective function.

In the supervised case, this minimization occurs over a set of
training data. In a denoising application one typically corrupts
a clean input with noise, passes it through the denoiser, and
uses the difference between the clean and denoised signal
to adapt various components of the denoising algorithm: the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2018.2883021

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

analysis operator, thresholding parameters, mixture weights,
the number of iterations, and so on. It is not necessary
to regularize the learning procedure to preclude degenerate
solutions, such as a transform of all zeros; such a transform
would not perform well at the denoising task, and thus would
not be learned by the algorithm [17], [18], [29].

In the unsupervised case, the objective function has two
components. The first is a surrogate for the true, but unavail-
able, metric of interest. In this paper, we use the combination
of sparsity and sparsification error to act as a surrogate for
reconstruction PSNR. The second part of the objective is a
regularizer that prevents degenerate solutions, as discussed
in Sections II-B and II-C. Even in the “universal” case, our
learning is essentially unsupervised, as the learning process is
not guided by the denoising PSNR.

The TNRD algorithm [19] is a supervised approach that
resembles iterative denoising using Algorithm 2, but where the
filter coefficients, nonlinearities, and regularization parameter
are allowed to vary as a function of iteration. However, the
TNRD approach has no requirements that the filters form a
well-conditioned frame or have low coherence; “poor” filters
are simply discouraged by the supervised learning process.
Denoising with the TNRD algorithm outperforms the learned
filter bank methods presented here.

One may ask if it is necessary that the learned transform
be a frame. Indeed, the matrix to be inverted when denoising
using Algorithm 2 is full-rank even if the filter bank itself
is not perfect reconstruction. The proposed regularizer, while
less restrictive than previous transform learning regularizers,
may still overly constrain the set of learnable sparsifying
transforms. However, our highly regularized approach has a
benefit of its own. Whereas the TNRD algorithm is trained on
hundreds of images, and can take upwards of days to train, our
algorithm can be applied to a single image and requires only
a few minutes. The tradeoff offered by the TNRD algorithm is
acceptable for image denoising tasks, as massive sets of natural
images are publicly available for use in machine learning
applications. However, such data sets may not be available
for new imaging modalities, in which case a tradeoff closer
to that offered by our filter bank learning algorithm may be
preferred. Finding a balance between our highly regularized
and unsupervised approach and competing supervised learning
methods is the subject of ongoing work.

VIII. CONCLUSIONS

We have developed an efficient method to learn sparsi-
fying transforms that are structured as undecimated, multi-
dimensional perfect reconstruction filter banks. Unlike pre-
vious transform learning algorithms, our approach can learn
a transform with fewer rows than columns. We anticipate
this flexibility will be important when learning a transform
for high dimensional data. Numerical results show our filter
bank sparsifying transforms outperform existing patch-based
methods in image denoising. Future work might fully embrace
the filter bank perspective and learn filter bank transforms with
various length filters and/or non-square impulse responses.

APPENDIX A

We explicitly show the link between filter banks and ap-
plying a sparsifying transform to a patch matrix. We assume
a 1D signal x ∈ RN to simplify notation. The extension to
multiple dimensions is tedious, but straightforward.

Let W ∈ RNc×K be a given transform, and let wi indicate
the i-th row of this matrix. Suppose we extract patches with
a patch stride of s and we assume s evenly divides N . The
j-th column of the patch matrix X ∈ RK×M is the vector
[xsj+K−1, xsj+K−2, . . . , xsj]

T . The number of columns, M ,
depends on the boundary conditions used. Linear and circular
convolution are obtained by setting xi = 0 or xi = xN−i−1,
respectively, when i < 0. For cyclic convolution, we have
M = N/s. The i, j-th element of the sparsified signal WX is

[WX]i,j =
K∑
k=1

Wi,kXk,j =
K∑
k=1

Wi,kxsj+K−1−i (34)

= (wi ∗ x)[sj +K − 1]. (35)

Thus the i-th row of WX is the convolution between the
filter with impulse response wi and signal x, followed by
downsampling by a factor of s, and shifted by K − 1. The
filter bank has Nc channels with impulse responses given
by the rows of W . The shift of K − 1 can be incorporated
into the definition of the patch extraction procedure. For 1D
signals, the “first” patch should be [xK−1, . . . x0]T , while for
2D signals, the lower-right pixel of the “first” patch is x[0, 0].

APPENDIX B
PROOF OF PROPOSITION 2

The function J1(W) in (21) acts only on the magnitude
responses of the filters in H. Let V ,

∣∣F̄WT
∣∣2 ∈ RN2

F×Nc .
The sum of the i-th column of V is equal to the norm of the
i-th filter and, by Lemma 1, the eigenvalues of H∗H are equal
to the row sums of V . Thus, V is generated by a UNTF if
and only if the row sums and column sums are constant.

Let V] be a stationary point of J1. For each 1 ≤ r ≤ N2
F

and 1 ≤ s ≤ Nc, we have

∂

∂Vr,s
J1(V]) =

1

2
− 1∑Nc

j=1 V
]
r,j

− 1∑N2
F

i=1 V
]
i,s

= 0. (36)

Note that J1(V) = +∞ if either a row or column of V
is identically zero, so V] is a minimizer only if there is
at least one non-zero in each row and column of V]. Sub-
tracting ∂

∂Vr′,s
J1(V]) from ∂

∂Vr,s
J1(V]) yields

∑Nc
j=1 V

]
r,j =∑Nc

j=1 V
]
r′,j , a. Similarly, subtracting ∂

∂Vr,s
J1(V]) from

∂
∂Vr,s′

J1(V]) yields
∑N2

F
i=1 V

]
i,s =

∑N2
F

i=1 V
]
i,s′ , b. As the row

and column sums are uniform for each r and s, we conclude
V] is a UNTF. Next, we have

N2
F∑

i=1

Nc∑
j=1

V]i,j =

N2
F∑

i=1

 Nc∑
j=1

V]i,j

 = N2
Fa (37)

=

NC∑
j=1

N2
F∑

i=1

V]i,j

 = Ncb, (38)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2018.2883021

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

15

from which we conclude b =
N2
F

Nc
a. Substituting into (36), we

find

a = 2

(
1 +

Nc
N2
F

)
, b = 2

(
N2
F

Nc
+ 1

)
, (39)

and this completes the proof.

REFERENCES

[1] E. J. Candes and D. L. Donoho, “New tight frames of curvelets and
optimal representations of objects with piecewise C2 singularities,”
Commun. Pure Appl. Math., vol. 57, pp. 219–266, 2004.

[2] S. Ravishankar and Y. Bresler, “Learning sparsifying transforms,” IEEE
Trans. Signal Process., vol. 61, pp. 1072–1086, 2013.

[3] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Process.,
vol. 15, pp. 3736–45, Dec. 2006.

[4] S. Ravishankar and Y. Bresler, “Closed-form solutions within sparsi-
fying transform learning,” in 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2013.

[5] ——, “Learning doubly sparse transforms for images,” IEEE Trans.
Image Process., vol. 22, pp. 4598–4612, 2013.

[6] ——, “Learning overcomplete sparsifying transforms for signal process-
ing,” in 2014 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2013, pp. 3088–3092.

[7] B. Wen, S. Ravishankar, and Y. Bresler, “Structured overcomplete sparsi-
fying transform learning with convergence guarantees and applications,”
International Journal of Computer Vision, Oct. 2014.

[8] L. Pfister and Y. Bresler, “Model-based iterative tomographic reconstruc-
tion with adaptive sparsifying transforms,” in Proc. SPIE Computational
Imaging XII, C. A. Bouman and K. D. Sauer, Eds. SPIE, Mar. 2014.

[9] S. Ravishankar and Y. Bresler, “Sparsifying transform learning for
compressed sensing MRI,” in International Symposium on Biomedical
Imaging, 2013.

[10] L. Pfister and Y. Bresler, “Tomographic reconstruction with adaptive
sparsifying transforms,” in 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp.
6914–6918.

[11] ——, “Adaptive sparsifying transforms for iterative tomographic recon-
struction,” in International Conference on Image Formation in X-Ray
Computed Tomography, 2014.

[12] R. Rubinstein, T. Peleg, and M. Elad, “Analysis K-SVD: A dictionary-
learning algorithm for the analysis sparse model,” IEEE Trans. Signal
Process., vol. 61, pp. 661–677, Feb. 2013.

[13] M. Yaghoobi, S. Nam, R. Gribonval, M. E. Davies et al., “Analysis op-
erator learning for overcomplete cosparse representations,” in European
Signal Processing Conference (EUSIPCO’11), 2011.

[14] M. Yaghoobi, S. Nam, R. Gribonval, and M. E. Davies, “Noise aware
analysis operator learning for approximately cosparse signals,” in 2012
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2012, pp. 5409–5412.

[15] ——, “Constrained overcomplete analysis operator learning for cosparse
signal modelling,” IEEE Trans. Signal Process., vol. 61, pp. 2341–2355,
May 2013.

[16] S. Hawe, M. Kleinsteuber, and K. Diepold, “Analysis operator learning
and its application to image reconstruction,” IEEE Trans. Image Pro-
cess., vol. 22, pp. 2138–2150, Jun. 2013.

[17] S. Roth and M. J. Black, “Fields of experts,” International Journal of
Computer Vision, vol. 82, pp. 205–229, 2009.

[18] Y. Chen, R. Ranftl, and T. Pock, “Insights into analysis operator learning:
From patch-based sparse models to higher order MRFs,” IEEE Trans.
Image Process., vol. 23, pp. 1060–1072, Mar. 2014.

[19] Y. Chen and T. Pock, “Trainable nonlinear reaction diffusion: A flexible
framework for fast and effective image restoration,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, pp. 1256–1272, 2016.

[20] J.-F. Cai, H. Ji, Z. Shen, and G.-B. Ye, “Data-driven tight frame con-
struction and image denoising,” Applied and Computational Harmonic
Analysis, vol. 37, pp. 89–105, 2014.

[21] M. A. T. Figueiredo, “Synthesis versus analysis in patch-based image
priors,” in 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Mar. 2017, pp. 1338–1342.

[22] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolu-
tional networks,” in 2010 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2010, pp. 2528–2535.

[23] V. Papyan, J. Sulam, and M. Elad, “Working locally thinking globally:
Theoretical guarantees for convolutional sparse coding,” IEEE Transac-
tions on Signal Processing, vol. 65, pp. 5687–5701, 2017.

[24] B. Wohlberg, “Efficient algorithms for convolutional sparse representa-
tions,” IEEE Trans. Image Process., vol. 25, pp. 301–315, 2016.

[25] C. Garcia-Cardona and B. Wohlberg, “Convolutional dictionary learning:
a comparative review and new algorithms,” IEEE Transactions on
Computational Imaging, vol. 4, pp. 366–381, 2018.

[26] S. Muramatsu, “Structured dictionary learning with 2-D non-separable
oversampled lapped transform,” in 2014 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2014.

[27] S. Muramatsu, M. Ishii, and Z. Chen, “Efficient parameter optimization
for example-based design of nonseparable oversampled lapped trans-
form,” in 2016 IEEE International Conference on Image Processing
(ICIP), 2016, pp. 3618–3622.

[28] S. Muramatsu, K. Furuya, and N. Yuki, “Multidimensional nonseparable
oversampled lapped transforms: Theory and design,” IEEE Transactions
on Signal Processing, vol. 65, pp. 1251–1264, 2017.

[29] G. Peyré and J. M. Fadili, “Learning analysis sparsity priors,” in The
9th International Conference on Sampling Theory and Applications
(SampTA), 2011.

[30] Y. Chen, T. Pock, and H. Bischof, “Learning `1-based analysis and
synthesis sparsity priors using bi-level optimization,” in Workshop on
Analysis Operator Learning vs Dictionary Learning, NIPS 2012, 2012.

[31] O. Christensen, An introduction to frames and Riesz bases. Birkhäuser,
2003.

[32] P. Vaidyanathan, Multirate systems and filter banks. Prentice Hall,
1992.

[33] M. N. Do, “Multidimensional filter banks and multiscale geometric
representations,” Foundations and Trends in Signal Processing, vol. 5,
pp. 157–164, 2012.

[34] Z. Cvetkovic and M. Vetterli, “Oversampled filter banks,” IEEE Trans.
Signal Process., vol. 46, pp. 1245–1255, May 1998.

[35] G. Strang and T. Nguyen, Wavelets and Filter Banks. Wellesley College,
1996.

[36] H. Bolcskei, F. Hlawatsch, and H. Feichtinger, “Frame-theoretic analysis
of oversampled filter banks,” IEEE Trans. Signal Process., vol. 46, pp.
3256–3268, 1998.

[37] J. K. Martin Vetterli, Wavelets and subband coding. Prentice-Hall,
1995.

[38] S. Venkataraman and B. Levy, “State space representations of 2-D FIR
lossless transfer matrices,” IEEE Trans. Circuits Syst. II, vol. 41, pp.
117–132, 1994.

[39] J. Zhou, M. Do, and J. Kovacevic, “Multidimensional orthogonal filter
bank characterization and design using the Cayley transform,” IEEE
Trans. Image Process., vol. 14, pp. 760–769, 2005.

[40] F. Delgosha and F. Fekri, “Results on the factorization of multidimen-
sional matrices for paraunitary filterbanks over the complex field,” IEEE
Trans. Signal Process., vol. 52, pp. 1289–1303, 2004.

[41] H. S. Malvar, Signal Processing with Lapped Transforms. Artech Print
on Demand, 1992.

[42] A. D. Poularikas, Ed., Transforms and applications handbook. CRC
press, 2010.

[43] V. Goyal, M. Vetterli, and N. Thao, “Quantized overcomplete expansions
in RN: analysis, synthesis, and algorithms,” IEEE Trans. Inf. Theory,
vol. 44, pp. 16–31, 1998.

[44] R. R. Coifman and D. L. Donoho, “Translation-invariant de-noising.”
Springer-Verlag, 1995, pp. 125–150.

[45] K. G. Murty and S. N. Kabadi, “Some NP-complete problems in
quadratic and nonlinear programming,” Mathematical Programming,
vol. 39, pp. 117–129, 1987.

[46] P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic
problems,” Mathematical Programming, vol. 96, pp. 293–320, 2003.

[47] L. Pfister and Y. Bresler, “Bounding multivariate trigonometric
polynomials with applications to filter bank design,” CoRR, 2018,
arXiv:1802.09588 [eess.SP].

[48] ——, “Bounding extremal values of multivariate trigonometric polyno-
mials,” IEEE Trans. Signal Process., Submitted.

[49] H.-Y. Gao and A. G. Bruce, “Waveshrink with firm shrinkage,” Statistica
Sinica, pp. 855–874, 1997.

[50] R. Chartrand, “Shrinkage mappings and their induced penalty functions,”
in 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2014, pp. 1026–1029.

[51] ——, “Fast algorithms for nonconvex compressive sensing: MRI recon-
struction from very few data,” in 2009 IEEE International Symposium
on Biomedical Imaging: From Nano to Macro, 2009, pp. 262–265.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2018.2883021

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

16

TABLE II: Reconstruction PSNR for test images averaged over 10 noise realizations. The column mean reports the mean
PSNR over the set of test images. The highest PSNR in each column shaded gray and in bold; the second highest result is
shaded gray. FBST-128-16 indicates a filter bank sparsifying transform with 128 channels and 16 × 16 filters and denoised
according to (33). The -I suffix indicates denoising with the iterative Algorithm 2. CSF7×7 indicates a cascaded shrinkage
field with 7× 7 filters. FoE3×3 denotes the Field of Experts using 3× 3 filters. NSOLT-D2-C48-O2 indicates an NSOLT with
downsampling by 2, 48 channels, and polyphase order 2.

σ 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30
Input PSNR 28.1 22.1 18.6 28.1 22.1 18.6 28.1 22.1 18.6 28.1 22.1 18.6 28.1 22.1 18.6 28.1 22.1 18.6

Method mean baboon barbara boat man peppers
WNNM 33.8 30.6 28.8 30.7 26.7 24.6 35.4 32.2 30.3 34.1 31.0 29.1 34.2 30.7 28.9 34.8 32.6 31.1
BM3D 33.6 30.4 28.6 30.5 26.5 24.4 35.0 31.7 29.8 33.9 30.8 29.0 34.0 30.6 28.8 34.8 32.5 31.0

STROLLR 33.6 30.4 28.6 30.5 26.6 24.7 35.1 31.9 29.9 33.8 30.7 28.9 33.8 30.5 28.7 34.8 32.4 30.9
EPLL 33.3 29.9 28.1 30.5 26.6 24.6 33.6 29.7 27.5 33.6 30.6 28.8 33.9 30.6 28.8 34.6 32.3 30.6

CSF5×5 33.1 29.7 27.7 30.3 26.3 24.1 33.4 29.3 26.8 33.6 30.5 28.6 33.8 30.4 28.6 34.6 32.0 30.3
CSF7×7 33.1 29.7 27.7 30.4 26.3 24.2 33.4 29.3 26.8 33.5 30.4 28.6 33.7 30.4 28.6 34.6 32.1 30.3
FOE3×3 32.8 29.1 27.1 30.1 25.9 23.7 32.6 28.1 25.5 33.3 30.1 28.2 33.5 30.0 28.2 34.3 31.5 29.8

PBST-64-8 33.1 29.5 27.5 30.3 26.0 23.8 34.0 30.0 27.8 33.5 30.1 28.2 33.4 29.8 28.0 34.4 31.7 29.9
PBST-256-16 33.3 29.7 27.7 30.4 26.1 23.9 34.2 30.3 28.0 33.6 30.2 28.2 33.6 30.0 28.0 34.6 31.9 30.1
PBST-64-8-I 33.2 29.8 27.8 30.3 26.1 24.1 34.1 30.3 28.0 33.6 30.3 28.4 33.6 30.1 28.3 34.6 32.0 30.4

PBST-256-16-I 33.4 29.9 27.9 30.4 26.4 24.2 34.2 30.5 28.2 33.7 30.4 28.4 33.8 30.2 28.4 34.7 32.2 30.5
FBST-64-8 33.3 29.8 27.8 30.3 26.1 23.9 34.4 30.5 28.2 33.7 30.3 28.3 33.7 30.1 28.2 34.5 31.9 30.2
FBST-128-8 33.3 29.8 27.8 30.4 26.1 24.0 34.3 30.5 28.3 33.7 30.3 28.4 33.7 30.1 28.3 34.6 31.9 30.2
FBST-196-8 33.3 29.8 27.8 30.4 26.2 24.0 34.3 30.5 28.2 33.7 30.3 28.4 33.7 30.2 28.2 34.5 31.9 30.1
FBST-64-16 33.3 29.8 27.8 30.2 26.0 23.9 34.5 30.8 28.6 33.6 30.2 28.2 33.5 30.0 28.1 34.4 31.9 30.1

FBST-128-16 33.3 29.9 28.0 30.3 26.1 24.0 34.6 31.0 28.8 33.6 30.3 28.4 33.6 30.1 28.2 34.6 32.0 30.4
FBST-196-16 33.4 30.0 28.0 30.3 26.1 24.0 34.7 31.1 29.0 33.7 30.3 28.4 33.6 30.1 28.2 34.6 32.0 30.4
FBST-64-8-I 33.4 30.0 28.1 30.4 26.3 24.2 34.4 30.7 28.5 33.8 30.5 28.6 33.8 30.3 28.5 34.7 32.2 30.6
FBST-128-8-I 33.4 30.0 28.1 30.4 26.4 24.3 34.3 30.7 28.5 33.8 30.5 28.7 33.8 30.3 28.4 34.7 32.2 30.6
FBST-196-8-I 33.4 29.9 28.0 30.5 26.4 24.2 34.3 30.6 28.3 33.7 30.4 28.5 33.8 30.3 28.4 34.6 32.1 30.5
FBST-64-16-I 33.4 30.1 28.1 30.4 26.3 24.2 34.6 31.1 29.0 33.8 30.4 28.5 33.6 30.3 28.5 34.7 32.2 30.6

FBST-128-16-I 33.4 30.1 28.3 30.4 26.4 24.3 34.7 31.2 29.2 33.7 30.6 28.7 33.7 30.2 28.5 34.7 32.3 30.7
FBST-196-16-I 33.5 30.2 28.3 30.4 26.3 24.4 34.8 31.4 29.3 33.8 30.5 28.7 33.7 30.3 28.4 34.7 32.3 30.8

NSOLT-D4-C12-O2 30.3 26.0 23.8 29.1 24.3 21.9 30.1 25.7 23.4 30.4 26.2 24.1 30.5 26.6 24.5 31.2 27.1 24.9
NSOLT-D2-C12-O2 30.9 26.8 24.7 29.3 24.6 22.4 30.8 26.4 24.2 31.2 27.3 25.2 31.3 27.3 25.3 32.0 28.3 26.2
NSOLT-D4-C12-O4 31.0 26.8 24.7 29.3 24.6 22.4 30.9 26.5 24.3 31.2 27.3 25.2 31.3 27.3 25.3 32.1 28.4 26.3
NSOLT-D4-C24-O2 30.8 26.6 24.5 29.2 24.5 22.3 30.9 26.7 24.4 30.9 26.9 24.8 31.0 27.0 25.0 31.8 27.9 25.9
NSOLT-D4-C24-O4 31.1 27.0 24.9 29.3 24.7 22.5 31.0 26.7 24.4 31.4 27.5 25.5 31.4 27.6 25.6 32.2 28.6 26.6
NSOLT-D2-C12-O4 29.9 25.6 23.4 28.9 24.1 21.7 29.8 25.4 23.2 30.0 25.8 23.7 30.1 26.0 24.1 30.8 26.6 24.5

[52] U. Schmidt and S. Roth, “Shrinkage fields for effective image restora-
tion,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2014, pp. 2774–2781.

[53] L. Pfister and Y. Bresler, “Automatic parameter tuning for image de-
noising with learned sparsifying transforms,” in 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017.

[54] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convolu-
tional auto-encoders for hierarchical feature extraction,” in Proceedings
of the 21th International Conference on Artificial Neural Networks.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 52–59.

[55] M. Tsatsanis and G. Giannakis, “Principal component filter banks for
optimal multiresolution analysis,” IEEE Trans. Signal Process., vol. 43,
pp. 1766–1777, 1995.

[56] P. Moulin and M. Mihcak, “Theory and design of signal-adapted FIR
paraunitary filter banks,” IEEE Trans. Signal Process., vol. 46, pp. 920–
929, 1998.

[57] B. Xuan and R. Bamberger, “Multi-dimensional, paraunitary principal
component filter banks,” in 1995 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), vol. 2, 1995, pp.
1488–1491.

[58] ——, “FIR principal component filter banks,” IEEE Trans. Signal
Process., vol. 46, pp. 930–940, 1998.

[59] M. A. Unser, “Extension of the Karhunen-Loeve transform for wavelets
and perfect reconstruction filterbanks,” in Mathematical Imaging:
Wavelet Applications in Signal and Image Processing, Nov. 1993, pp.
45–56.

[60] L. Pfister and Y. Bresler, “Learning sparsifying filter banks,” in Proc.
SPIE Wavelets & Sparsity XVI, vol. 9597. SPIE, Aug. 2015.

[61] R. H. Chan, J. G. Nagy, and R. J. Plemmons, “Circulant preconditioned
Toeplitz least squares iterations,” SIAM Journal on Matrix Analysis and
Applications, vol. 15, pp. 80–97, Jan. 1994.

[62] T. Strohmer, Finite-and Infinite-Dimensional Models for Oversampled
Filter Banks. Boston, MA: Birkhäuser Boston, 2001, pp. 293–315.

[63] B. Sharif and Y. Bresler, “Generic feasibility of perfect reconstruction
with short FIR filters in multichannel systems,” IEEE Transactions on
Signal Processing, vol. 59, pp. 5814–5829, 2011.

[64] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, pp. 183–202, Jan. 2009.

[65] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by
sparse 3-d transform-domain collaborative filtering,” IEEE Trans. Image
Process., vol. 16, pp. 2080–2095, 2007.

[66] S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted nuclear norm
minimization with application to image denoising,” in 2014 IEEE
Conference on Computer Vision and Pattern Recognition, Jun. 2014,
pp. 2862–2869.

[67] D. Zoran and Y. Weiss, “From learning models of natural image patches
to whole image restoration,” in 2011 IEEE International Conference on
Computer Vision (ICCV), 2011, pp. 479–486.

[68] U. Schmidt, Q. Gao, and S. Roth, “A generative perspective on MRFs
in low-level vision,” in 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2010, pp. 1751–1758.

[69] B. Wen, Y. Li, and Y. Bresler, “When sparsity meets low-rankness:
Transform learning with non-local low-rank constraint for image restora-
tion,” in 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Mar. 2017, pp. 2297–2301.

[70] ——, “The power of complementary regularizers: Image recov-
ery via transform learning and low-rank modeling,” CoRR, 2018,
arXiv:1808.01316 [cs.CV].

[71] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, pp. 600–12, Apr. 2004.

[72] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. 8th Int’l Conf.
Computer Vision, vol. 2, Jul. 2001, pp. 416–423.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2018.2883021

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

