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Abstract

Chemical imaging provides information about the distribution of chemicals within a target. When combined
with structural information about the target, in situ chemical imaging opens the door to applications ranging
from tissue classification to industrial process monitoring. The combination of infrared spectroscopy and optical
microscopy is a powerful tool for chemical imaging of thin targets. Unfortunately, extending this technique to
targets with appreciable depth is prohibitively slow.

We combine confocal microscopy and infrared spectroscopy to provide chemical imaging in three spatial di-
mensions. Interferometric measurements are acquired at a small number of focal depths, and images are formed
by solving a regularized inverse scattering problem. A low-dimensional signal model is key to this approach: we
assume the target comprises a finite number of distinct chemical species. We establish conditions on the con-
stituent spectra and the number of measurements needed for unique recovery of the target. Simulations illustrate
imaging of cellular phantoms and sub-wavelength targets from noisy measurements.

1 Introduction

Chemically specific imaging provides quantitative information about the distribution of chemicals within a target.
This may be accomplished through the use of exogenous chemicals or molecular staining to improve contrast
when the target is imaged with visible light. In many applications, these dyes cannot be introduced in situ and the
agents are often damaging to the target.

Vibrational spectroscopy with mid-infrared light presents a solution [1]. Absorption of mid-infrared light de-
pends on chemical composition. The underlying chemistry of a target can be determined, non-invasively, by illu-
minating the object with mid-infrared light and recording an absorption spectrum.

In principle, mid-infrared spectroscopy can provide chemically specific, spatially resolved imaging in three
spatial dimensions using a confocal scanning strategy: the target would be scanned point-by-point in three spatial
dimensions, and an absorption spectrum would be measured at each point [2, 3]. For a target with two spatial
dimensions, this is feasible- a typical data set of 1024 spectral samples over a 1024× 1024 pixel grid requires on
the order an of hour of acquisition time and generates roughly 4 GB of data [4–7]. Scanning along a third spatial
dimension (depth) makes imaging even a single target impractical: the resulting dataset would require over 4
terabytes of storage and roughly a month of acquisition time.

The key challenge in jointly measuring structural and chemical information is dimensionality: with no con-
straints, the target can vary in three spatial and one spectral dimension. Existing imaging modalities explicitly or
implicitly rely on simple signal models to reduce the dimensionality of the target and allow for practical imaging.
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Optical Coherence Tomography (OCT) and Interferometric Synthetic Aperture Microscopy (ISAM) are scattering-
based imaging modalities that reconstruct the 3D spatial distribution of a target by ignoring spectral variation
[8–11] , although limited spectral information can be recovered at the expense of spatial resolution by way of time-
frequency analysis [12–14].

Fourier Transform Infrared (FTIR) spectroscopy, a workhorse of academic and industrial labs worldwide, ne-
glects all spatial variation within the target—thus reducing the target to a single dimension. An extension, FTIR
microspectroscopy, provides spatially and spectrally resolved measurements but requires the target to be very thin
with only transverse heterogeneities. Unmodeled spatial variations in the target cause scattering and diffraction,
ultimately distorting the measured spectra [2, 3].

We propose an approach that bridges these two extremes and allows for practical, chemically specific imaging.
We call this spectroscopic tomography. Rather than finely scanning the focus through the axial dimension of the
target, we acquire data at a small number of en-face focal planes. The target is recovered by solving the linearized
scattering problem. A low-dimensional model is used to regularize the inverse problem: we model the target as
the linear combination of a finite number of distinct chemical species. We call this the N -species approximation.
We develop a set of algebraic conditions for unique recovery and examine the conditioning of the inverse problem.
Reconstructions from synthetic phantom data illustrate the promise of the model.

The N -species model was investigated for a one-dimensional target in [15]. However, [15] involved several
involve several unrealistic assumptions, leading to results of unrealistically high quality. We extend this work in
several directions: we (i) use a non-asymptotic forward model; (ii) demonstrate material-resolved reconstruction
of samples with two spatial dimensions (one transverse and depth, easily extended to three spatial dimensions)
from synthetic scattering data that are not generated according to the first Born approximation; and (iii) refine the
conditions for recovery of a sample consisting of N -species from interferometric scattering experiments.

The paper is organized as follows. In Section 2 we describe the forward model. Section 3 describes the N -
species model in greater detail. We discuss the sampling and discretization procedure in Section 4. We investigate
the inverse problem in Section 5, and demonstrate the method by performing numerical reconstructions from
simulated measurements in Section 6.

1.1 Notation

We write the set of integers {0,1, . . . , N −1} as [N ] and the two-fold Cartesian product [N ]× [N ] as [N ]2. We write
the imaginary unit as i. Finite-dimensional vectors are denoted by lower-case bold letters, e.g. x ∈ CN . Finite-
dimensional matrices and multi-dimensional arrays are written using upper-case bold letters. We adopt Matlab-
style indexing notation: given a matrix A ∈CN×M , its i -th row is A[i , : ], the j -th column is A[ : , j ], and the (i , j )-th
element is A[i , j ]. We denote the vector vec(A) ∈ CN M is formed by stacking the columns of A into a single vector
(i.e., row-major ordering). The range, null space, and rank of a matrix A are written range{A} ,null {A}, and rank(A).
Given x ∈CN , the diagonal matrix diag{x} ∈CN×N has the entries of x along its main diagonal.

The transpose (resp. Hermitian transpose) of a matrix is written AT (resp. AH). The `p norm of x ∈ CN is

‖x‖p =
(∑N

j=1

∣∣x[ j ]
∣∣p

)1/p
. For vectors in R2 or R3 we use the shorthand |r | = ‖r‖2. The N ×N identity matrix is IN ,

and the vector [1,1, . . .1]T ∈RN is written 1N . The tensor (or Kronecker) product between matrices A and B is A⊗B.

2 Preliminaries

We characterize the sample under investigation by its complex refractive index, n(r,k) = nb +δn(r,k) where nb is
the refractive index of the background medium and δn is the perturbation due to the sample; for simplicity, we take
nb = 1. Here, r = (x, y, z) = (ρ, z), where ρ are the transverse dimensions and z indicates the axial dimension. We
assume that δn is (spatially) supported in the bounded region Γ⊂ R3. The free-space wavenumber k is related to
temporal frequencyω by k =ω/c, where c is the speed of light in free space. The real part of the complex refractive
index is the ratio between c and the phase velocity in the medium, while the imaginary part indicates attenuation
due to propagation through the target.

Under the first Born approximation, the obtained measurements are linear in the complex susceptibility η,
n2 −1; we will work with the susceptibility rather than the refractive index. Note that η is also supported on Γ.

In the context of spectroscopy, the “spectrum” of a sample usually refers either to its complex refractive index
or only the imaginary part of the refractive index. Consider a homogeneous medium with refractive index n(k) =
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Figure 1: Geometry and notation for scattering problem. The illuminating aperture is located at (ρ0,0). The field
emerges from the aperture and is focused to the plane z = z f . The incident beam interacts with the sample, η, and
the backscattered light (red) is collected through the aperture to produce the measurement S(ρ0,k, z f ).

nr (k)+ iκ(k). The real part, nr (k), has mean value greater than one and the imaginary part, κ(k), is non-negative.
Relating η(k) to n(k), we have

η(k) = n(k)2 −1 = nr (k)2 −κ(k)2 −1+2inr (k)κ(k).

Unlike the refractive index, the mean value of the real part of η(k) may be less than one and can be negative. The
imaginary part of η(k) remains non-negative.

2.1 Interferometric Synthetic Aperture Microscopy

In this section, we review the forward model relating the target, η, to the observed data. For a complete derivation,
see [9, 11, 16, 17].

The imaging geometry is depicted in Fig. 1. An aperture located at (ρ0,0) emits a broadband Gaussian beam
focused to a point r0 = (ρ0, z f ) within the sample. The illuminating field interacts with the sample, and a portion
of the light is scattered backwards and is collected through the aperture. The aperture is raster scanned along the
transverse coordinates ρ0. At each point the scattered field is measured interferometrically, from which we use
standard techniques to recover the complex (phase-resolved) measurements. In the remainder of this paper, we
ignore the interferometric aspects of data acquisition and work directly with the phase-resolved measurements.

Under the first Born approximation, the measured data S(ρ0,k, z f ) are a linear function of η; we have

S(ρ0,k, z f ) =
Ï

A(ρ0 −ρ, z − z f ,k)η(ρ, z,k) dz d2ρ, (1)

or, after taking a Fourier transform with respect to the scanning dimension ρ0,

Ŝ(κ,k, z f ) = 1

2π

∫
S(ρ0,k, z f )e−iκ·ρ0 d2ρ =

∫
Â(κ, z − z f ,k)η̂(κ, z,k)dz. (2)

We call the function Â the ISAM kernel. This function is itself defined by an integral; explicitly,

Â(κ, z,k),
|ζ(k)|2
k2NA2

∫
Ω(κ,k)

exp
{
− 1

(kNA)2

(∣∣κ′∣∣2 + ∣∣κ−κ′∣∣2
)
+ iz

(
kz

(
κ′,k

)+kz
(
κ−κ′,k

))}
kz (κ′,k)

d2κ′, (3)

where kz (κ,k),
√

k2 −|κ|2 and the setΩ(κ,k),
{
κ′ ∈R2 :

∣∣κ−κ′∣∣≤ k,
∣∣κ′∣∣≤ k

}⊂R3 restricts the integral to prop-
agating modes. The scalar NA > 0 is the numerical aperture of the illumination lens and |ζ(k)|2 is the power spec-
trum of the illumination source. We assume that ζ(k) is supported on the interval [kmin,kmax].

2.2 Image Reconstruction using ISAM

Next, we discuss recovering the object η from measurements of the form (2). First, note that ζ(k) in (3) ensures that
Â(κ, z,k) vanishes for any k ∉ [kmin,kmax]. Further, Ω(κ,k) is empty for |κ| > 2k and so Â(κ, z,k) vanishes for all
|κ| > 2kmax. Thus the measurements are related to the bandlimited transverse Fourier transform of the object.
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Figure 2: Observable Fourier components for a target with two spatial and one spectral dimensions. The intersec-
tion of V with a plane of constant k becomes an arc of constant radius when projected onto the (kx ,kz ) plane.

Previous derivations of ISAM continue by invoking a pair of approximations to the integral (3). One approxi-
mation holds when k

∣∣z − z f
∣∣ is small and the other holds when the same quantity is large. Both approximations

are of the form
Â(κ, z − z f ,k) ≈χ (κ,2k) |ζ(k)|2ϑ (κ,k)υ(z − z f )e ikz (κ,2k)(z−z f ) (4)

where

χ (κ,k),

{
1, |κ| ≤ k

0, otherwise,

the function ϑ (κ,k) captures the transverse bandpass nature of the imaging system due to the aperture, and υ(z)
is a depth-dependent weighting function. The precise form of these functions depends on if k

∣∣z − z f
∣∣ is large or

small; in either case, ϑ (κ,k) ∝ e
− |κ|2

(kNA)2 and υ(z) falls off as z−1 [11].
Inserting (4) into the measurement model (2), we have

Ŝ(κ,k, z f ) ≈χ (κ,2k) |ζ(k)|2ϑ (κ,k)e ikz (κ,2k)z f

∫
υ(z − z f )η̂(κ, z,k)e−ikz (κ,2k)z dz. (5)

Consider a single, fixed, focal plane; this is the usual setting for ISAM imaging. Define the weighted susceptibility

ξ̂z f (κ, z,k), υ(z − z f )η̂(κ, z,k).

The integral in (5) is the Fourier transform of ξ̂z f with respect to z evaluated at the frequency −kz (κ,2k); thus

Ŝ(κ,k, z f ) ≈χ (κ,2k) |ζ(k)|2ϑ (κ,k)e ikz (κ,2k)z f ˆ̂ξz f (κ,−kz (κ,2k) ,k),

where the double hat indicates a 3D Fourier transform with respect to r = (x, y, z). This is a generalized projection-
slice theorem: the ISAM data are approximately the bandlimited (spatial) Fourier transform of the weighted sus-
ceptibility evaluated on a three dimensional surface that is parameterized by κ and k. By varying κ and k, we are

able to observe a curved 3D “slice” of the four-dimensional function ˆ̂ξz f (κ,kz ,k) constrained to the surface

V,
{

(kx ,ky ,kz ,k) :
√

k2
x +k2

y +k2
z = 2k, kz < 0, k2

x +k2
y ≤ 4(kNA)2, kmin ≤ k ≤ kmax

}
.

The sampling surface for a target with two spatial dimensions, i.e. r = (x, z), is illustrated in Fig. 2; that we can only
observe kz < 0 is due to the backscattering geometry. As defined, V contains only the Fourier components above
the e−2 cutoff frequency of ϑ (κ,k). This is arbitrary as ϑ (κ,k) decays smoothly.

We cannot recover an arbitrary object given ISAM data at a single focal plane. If the focus z f were scanned in
addition to ρ0, we could further simplify by taking a Fourier transform along z f . Then, the measurements would

4



be of the form ˆ̂S(κ,kz ,k) = ˆ̂A(κ,kz ,k) ˆ̂η(κ,kz ,k), where the double hat indicates the 3D Fourier transform with
respect to r. Now, η could be recovered using a standard deconvolution procedure. Unfortunately, this is infeasible
for reasons described in Section 1.

The situation is simplified if η is not a function of k; such an object is said to be non-dispersive. This is one of the
key assumptions on which ISAM, OCT, diffraction tomography, and reflection tomography are built [8, 18, 19]. In
this case, the measurements are related to a 3D slice of the 3D target η(x, y, z). The observable Fourier components
are

B,
{

(kx ,ky ,kz ) :
√

k2
x +k2

y +k2
z = 2k, kz < 0, k2

x +k2
y ≤ 4(kNA)2, kmin ≤ k ≤ kmax

}
The region B is called the optical passband of the ISAM imaging system. Strictly speaking, we observe the Fourier
components of the weighted susceptibility on B, but this distinction is usually ignored. Only a non-dispersive
(weighted) object whose spatial Fourier transform is supported on B can be perfectly imaged by the ISAM system
with a single focal plane. Otherwise, ISAM is able to recover, at best, a spatial bandpass version of the original
target. In the visualization of Fig. 2, B is the “shadow” cast by V onto the plane k = 0.

We do not directly use the approximate kernel (4) in this paper. However, we use the insight provided by this
approximation as a guide; in particular, the Fourier transform interpretation and the optical passband B inform
the sampling procedure and help establish fundamental limits of the imaging system.

3 The N -species Model

3.1 The Model

Existing imaging modalities use simplified signal models to reduce the dimensionality of the sample and allow
for practical imaging. ISAM, optical coherence tomography, diffraction tomography, and reflection tomogra-
phy require the target be either non-dispersive or have known spatially invariant dispersion characteristics. In
this case, the susceptibility is of the form η(r,k) = p(r)h(k), where p(r) captures the spatial density of the target
and h(k) characterizes the wavelength-dependent dispersion characteristics. If h(k) is known, only p(r) must be
determined—thus reducing the problem to recovery of a three-dimensional object. Conversely, Fourier Transform
Infrared spectroscopy of a bulk medium assumes that the sample is spatially homogeneous, so that η(r,k) = h(k).
An extension, FTIR microscopy, models the sample as a thin absorbing screen; thus η(r,k) = η(ρ,k), a three-
dimensional object.

These examples severely restrict the class of samples that can be imaged. We propose a model that is more
expressive than these examples while still allowing practical imaging.

Definition 1 (The N -species model [15]). An object, described by a susceptibility η(r,k), is said to satisfy the N -
species model if

η(r,k) =
Ns∑

s=1
ps (r)hs (k). (6)

The function ps (r) captures the spatial variation of the s-th species and is called the spatial density. If species s is
not present at location r, then ps (r) = 0. The complex function hs models the wavelength-dependent properties of
the s-th species and is called the spectral profile.

The N -species model, introduced in [15], is a rank Ns approximation to a general susceptibility. A similar
decomposition has been applied to magnetic resonance spectroscopic imaging, where it is called the Partially
Separable (PS) function model [20–23], and to material decomposition in X-ray tomography [24, 25].

3.2 Spectroscopic Tomography with the N -Species Model

Inserting the N -species model (6) into the linearized forward model (2), we have

Ŝ(κ,k, z f ) =
Ns∑

s=1
hs (k)

∫ ∞

−∞
Â(κ, z − z f ,k)p̂s (κ, z)dz. (7)

5



At a given focal plane, the measurements are the sum of Ns independent ISAM experiments, each on a non-
dispersive object p̂s (κ, z) and each weighted by the spectral profile hs (k). In what follows, we study inverse prob-
lem associated with spectroscopic optical tomography: we wish to recover an object that satisfies the N -species
model from measurements of the form (7).

In the single species case, the inverse problem can be solved from data acquired at single focal plane—this is
the usual ISAM problem. On the other hand, an arbitrary sample can be recovered by finely scanning in all three
spatial dimensions (i.e., alongρ0 and z f ) and acquiring a spectrum at each point, but this is infeasible as described
in Section 1.

The N -species model is a middle ground between a single species object and an arbitrary one. We show that
the number of measurements required to solve the inverse problem also lies in a middle ground between these
two extremes: in particular, an object satisfying the N -species model can be recovered using N f ≈ Ns focal planes.

We divide the inverse problem into three distinct cases.

(P1) Known Spectra. Assume the spectral profiles {hs }Ns
s=1 are fixed and known. The task reduces to a linear inverse

problem—recovery of the
{

p̂s
}Ns

s=1 from measurements of the form (7).

(P2) Spectra from a Dictionary. Assume the target comprises at most Ns chemical species, but the spectral profiles
are drawn from a (known) dictionary of some Ms > Ns possible spectra. The inverse problem can be phrased
as either a linear inverse problem over the entire dictionary, or as a nonlinear problem where the solution is
constrained to lie in a union of subspaces.

(P3) Fully Blind. Both the {hs }Ns
s=1 and

{
p̂s

}Ns
s=1 are unknown and must be recovered from measurements of the

form (7). This is a bilinear inverse problem in hs and ps .

In this paper, we limit our attention to cases (P1) and (P2). Our analysis is based on a discretized form of (7)
wherein all quantities are replaced by finite-dimensional versions, resulting in a so-called “discrete-to-discrete”
inverse problem [26, 27]. Next, we describe the sampling and discretization procedure.

4 Sampling and Discretization of the Forward Model

4.1 Sampling

The instrument acquires samples of the spatial-domain measurement equation (1). We assume the object is (spa-
tially) supported in a region Γ⊂R3; here, we take Γ= [0,Lx ]×[0,Ly ]×[0,Lz ]. We write the number of samples as Ni

and the discretization or sampling interval as∆i for i ∈ {
x, y, z,k

}
. We obtain measurements at the transverse aper-

ture locations ρ0 = (nx∆x ,ny∆y ) for integers nx ,ny . The parameters are chosen to cover Γ, i.e. Ni∆i = Li holds for
i = x, y, z. For simplicity, we assume the sampling parameters are the same along the x and y directions: Nx = Ny ,
∆x =∆y , and Lx = Ly = Nx∆x . The wavenumber is sampled uniformly over the interval [kmin,kmax] with sampling

interval ∆k ; the i -th measurement wavenumber is ki , kmin + i∆k . We acquire data at N f focal planes, written{
zi : i = 1,2, . . . N f

}
. The same sampling parameters are used at each focal plane; in particular, the set of sampled

wavenumbers does not change.
We choose the sampling parameters as we would for a standard, single-species ISAM problem.The necessary

sampling intervals can be motivated using the approximate forward model (4). Under this model, it can be shown
that “point spread function”

∣∣A(ρ,k, z)
∣∣ (approximately) decays like a Gaussian in

∣∣ρ∣∣; the measurements are “es-
sentially” space limited [28]. We take Lx large enough to safely neglect the unmeasured data. Moreover, for fixed z f ,
the measurements are bandlimited in q to [−kmax sinNA,kmax sinNA]; we sample along the transverse dimension
at intervals ∆x ,∆y <π/(kmax sinNA).

4.2 Discretization

Given samples of the measurements (1), we take the 2D Discrete Fourier Transform (DFT) with respect to the
transverse coordinates and write the result as the array Ŝ ∈ CNx×Nx×Nk×N f . For simplicity, we take Nx to be even.
The 2D-DFT coordinate is written q ∈ [Nx ]2 .

6
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Figure 3: The various unfoldings of the discretized spatial densities with Ns = 2. Here, block color indicates the
value of q. Species 1 is marked with a star, while species 2 is indicated with a circle.

As the measurements are bandlimited and the object is compactly supported, the DFT of the measurements
can be well-approximated by samples of the Fourier transform of the continuous model (2) [27]. The discretized
N -species measurement model is

Ŝ[q,m, f ] =
Ns∑

s=1
hs [m]

Nz−1∑
n=0

Â f [q,m,n]P̂s [q,n], (8)

where hs ∈ CNk and P̂s ∈ CNx×Nx×Nz are the discretized spectral profile and the 2D-DFT of the s-th spatial density
with respect to the transverse coordinates. The coefficients Â f are obtained by sampling the continuous ISAM
kernel (3); that is,

Â f [q,m,n], Â
(
κ(q),kmin +m∆k ,n∆z − z f

)
. (9)

Here, κ(q), (kx (qx ),ky (qy )) relates the DFT index q to the continuous Fourier coordinate κ, where

kx (qx ) =
{

2πqx /Lx qx < Nx /2

2π(qx −Nx )/Lx otherwise,
(10)

and the same holds for qy and ky .

4.3 Block-Matrix Form of N -Species Forward Model

With the spectral profiles fixed, the measurements Ŝ are a linear function of the spatial densities. We can write the
forward model (8) as a matrix-vector product, where the vector depends only on the spatial densities. Moreover,
as the forward model is separable in q, the resulting matrix has a block-diagonal structure. In what follows, we will
analyze the inverse problem for each q independently.

We write the forward model (8) as a separate linear system for each q. Recall upper-case bold letters refer
to matrices or arrays and lower-case bold letters refer to vectors. We use a bar to denote objects that have been
“stacked” or vectorized. Subscripts are used to slice a array with respect to the last index: e.g., Ŝ f represents all
measurements from the f -th focal plane, while hs is the spectral profile for the s-th species. A superscript indicates
a submatrix or vector formed for particular value of q. In particular, we define

ŝq
f , Ŝ[q, : , f ] ∈CNk

Âq
f , Â f [q, : , : ] ∈CNk×Nz

p̂q
s , P̂s [q, : ] ∈CNz .

Further, define the diagonal matrix Ds , diag(hs ) ∈CNk×Nk . Now, for fixed q and f , (8) can be written

ŝq
f =

Ns∑
s=1

Ds Âq
f p̂q

s . (11)

7



The collection of (11) for f ∈ [N f ] can be written as a single linear system in block form as
ŝq

1
...

ŝq
N f

=


D1Âq

1 . . . DNs Âq
1

...
. . .

...
D1Âq

N f
. . . DNs Âq

N f




p̂q
1
...

p̂q
Ns

 ,

or concisely as
s̄q =Φqp̄q

where the vectors

p̄q , vec
(
P̂[q, : , : ]

)= [(p̂q
1 )T, . . . , (p̂q

Ns
)T]T ∈CNs Nz

s̄q , vec
(
Ŝ[q, : , : ]

)= [(ŝq
1 )T, . . . , (ŝq

N f
)T]T ∈CN f Nk ,

contain the spatial densities for each species and measurement for all focal planes, respectively, and

Φq ,


D1Âq

1 . . . DNs Âq
1

...
. . .

...
D1Âq

N f
. . . DNs Âq

N f

 ∈CN f Nk×Ns Nz . (12)

Each block-row of Φq corresponds to a single transverse Fourier component of measurements taken at a single
focal plane, and the s-th block-column corresponds to the s-th species.

4.4 Construction using Khatri-Rao product

We briefly discuss an alternative construction ofΦq that connects the N -species inverse problem to a broad range
of related problems, which we explore in Section 5.2.3.

Definition 2. The row-wise Khatri-Rao product of matrices A ∈Cm×n1 and B ∈Cm×n2 is

A¯B =

 A[1, : ]⊗B[1, : ]
...

A[m, : ]⊗B[m, : ]

 ∈Cm×n1n2 ,

i.e. each row of A¯B is the Kronecker product of the corresponding rows of A and B.

We use the Khatri-Rao product to constructΦq. First, we define the matrix of spectral profiles H ∈CNk×Ns by

H[m, s] = hs [m].

Now, the first block-row of Φq is H¯ Âq
1 . To obtain all block-rows of Φq, we first stack the

{
Âq

f

}N f

f =1
into the matrix

Āq , [(Âq
1 )T . . . (Âq

N f
)T]T ∈ CN f Nk×Nz . Next, stack N f copies of H into H̄ , (1TN f

⊗H) = [HT, . . . ,HT]T ∈ CN f Nk×Ns .

Now,Φq = H̄¯ Āq.

5 The N -Species Inverse Problem

5.1 Preliminaries: The Single Species Case

Under the N -species model (8), the measurements at each focal plane are modeled as the sum of Ns independent
ISAM experiments; thus, the ISAM matrices Âq

f set fundamental limits on what can be imaged. Stated plainly, if a

spatial density lies in the null space of each Âq
f , then it will generate no measurement and thus cannot be imaged

using the proposed method.
A careful study of the spectral properties of these matrices is beyond the scope of this paper. Instead, we com-

bine a numerical study of these matrices with intuition obtained from the approximate ISAM kernel (4). We com-
puted the singular values of Âq

f in the case of one transverse dimension, x, using the computational parameters

8
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Figure 4: Left: Singular values of Âqx

f in the case of one transverse dimension. The coordinate kx is obtained from

qx using (10). Right: singular values for kx = 0 and kx = 1. The vertical line marks the rank estimate (13). The focal
plane is located at z f = 140µm. The remaining system parameters are listed in Table 1.

listed in Table 1. The singular values are shown in Fig. 4, where the continuous Fourier coordinate kx is determined
from the DFT index qx using (10). While we do not form Âq

f using the approximate kernel, the approximate kernel

provides intuition for the behavior seen here. The largest singular values die off quickly as kx increases, as expected
due to the function ϑ (κ,k) in (4). Moreover, for |kx | > 2kmax, ISAM matrix is uniformly zero due to χ(κ,2k).

According to the approximate forward model (5), for kx = 0 we obtain the (bandlimited) Fourier transform
of the space-limited weighted susceptibility. The eigenvalue spectrum of space-and-frequency limited Fourier
operators has been studied, beginning with a series of papers by Slepian, Landau, and Pollak [28–32]. In the dis-
crete case, the eigenvalue and singular value spectrum of space-and-frequency limited Discrete Fourier Transform
(DFT) matrices have been studied; such matrices are submatrices formed by consecutive rows and columns of a
DFT matrix [33–35]. The singular values of a space-and-frequency limited DFT matrix are divided into three dis-
tinct regions: (1) a region wherein the singular values are near one; (2) a transition region where the singular values
decay exponentially; and (3) the remaining singular values are nearly zero. The number of singular values in the
first region is called the effective rank and is written re . A direct application of Slepian-Pollak theory predicts [31,35]

re = 2(kmax −kmin)

2π/Lz
= Lz

π
(kmax −kmin). (13)

For fixedκ, the approximate ISAM operator can be viewed as a space-and-frequency limited Fourier operator with
additional weighting in the spatial domain by υ(z) and in the frequency domain byϑ (κ,k). For eachκ the operator
is space-limited to a region of length Lz ; this is due to assumption that η is compactly supported. Moreover, the
operator is frequency-limited to the optical passband B. In the discretized setting, only A0

f can be viewed as a

(diagonally scaled) DFT matrix, as for q 6= 0 the resulting Fourier transform is not uniformly sampled.
We can use the theory of space-and-frequency limited DFT matrices to understand the behavior of the spec-

trum of Â0
f as shown in Fig. 4. The singular values are broken into three regions: in the first region, the singular

values decay exponentially, albeit at a rate slower than in the second region. The transition between the first and
second regions still occurs at re . In the case of the parameters used in Fig. 4, we have re = 60, and the change in
behavior at re is evident. The case of kx 6= 0 is more complicated as the resulting Fourier transform is not uniformly
sampled.

Recall that B is the set of observable Fourier components of the weighted susceptibility, ν(z − z f )p̂(κ, z). A
common practice in ISAM imaging is to ignore the axial weighting function and treat B as the observable Fourier
components of the unweighted susceptibility (see, e.g. [9, 11]). This is a reasonable approximation of the imag-
ing system. To justify the approximation, note that ν(z) is strictly positive and slowly varying; thus the Fourier
transform of the weighted and unweighted susceptibilities are roughly supported on the same set.

Using the same line of reasoning, we assume that null
{

Âq
f

}
is invariant to the choice of focal plane z f . This

is reasonable when the focal planes are close to one another. Note that this is an implicit assumption in previous
work on multi-focal ISAM [36].

9



5.2 Algebraic Conditions for a Unique Solution to (P1)

We now consider the discretized N -species inverse problem. We begin by considering the discretized form of
(P1): we assume the spectral profiles hs are fixed and known. In this case, recovery of the spatial densities from
measurements of the form (8) is a linear inverse problem. We study the each “one-dimensional” problem s̄q =Φqp̄q

for q ∈ [Nx ]2, withΦq given by (12). In the remainder of this section the DFT index q is fixed.
Without additional constraints on the spatial densities, the existence and uniqueness of a solution is deter-

mined entirely by the matrices Φq. In this section, we establish algebraic conditions for existence and uniqueness

of a solution in terms of the ISAM matrices,
{

Âq
f

}N f

f =1
, and the chemical spectra, {hs }Ns

s=1. Earlier work on this prob-

lem claimed that N f ≥ Ns and linear independence of the hs is necessary and sufficient for unique recovery of the
spatial densities within the optical passband [15]. While necessary, we show these two conditions are not sufficient.

For each focal plane, the ISAM matrix Âq
f is of size Nk ×Nz , where Nk is the number of wavenumber samples

and Nz is the (axial) length of the discretized spatial density. Per Section 5.1, we assume the null space of Âq
f is

invariant to the choice of focal plane, thus for fixed q each matrix has the same rank. Let r , rank
(
Âq

f

)
for f ∈ [N f ].

We write the shared nullspace of the ISAM matrices as Nq ⊆CNz ; we have

Nq , null
{

Âq
f

}
for f ∈ [N f ].

The optical passband is
(
Nq

)⊥. Define the subspace

N̄q ,Nq ×Nq . . .×Nq = span
{

p̄q = [(p̂q
1 )T, . . . , (p̂q

Ns
)T]T

∣∣∣ p̂q
s ∈Nq, s ∈ [Ns ]

}
⊆CNs Nz

of block vectors where each block is in Nq. The subspace
(
N̄q

)⊥
consists of block vectors where each block lies in

the optical passband,
(
Nq

)⊥. In an abuse of notation, we refer to both
(
Nq

)⊥ and
(
N̄q

)⊥
as “the optical passband”.

Using the N -species model, the measurements are a weighted sum of ISAM experiments; thus any objects that
lie in N̄q will also be in null

{
Φq

}
. If an object cannot be imaged using ISAM, it cannot be imaged using Φq. We

must consider uniqueness modulo N̄q; we wish to establish conditions such that these are the only objects that
cannot be imaged using Φq. In this case, the N -species model does not introduce additional ambiguity and each
species is correctly identified. We do no worse using the N -species model than if we were able to image the spatial
densities independently using the ISAM system.

Let us pause to consider the geometry of a simple case: two species and a single focal plane. Here, Φq =
[D1Âq

1 ,D2Âq
1 ] and s̄q =Φqp̄q = D1Âq

1 p̂1 +D2Âq
1 p̂2. Clearly, if p̂q

1 and p̂q
2 are each in Nq, then s̄q = 0. Suppose the hs

are non-zero for each index; then Ds is full rank. Using the formula for the rank of a partitioned matrix,

rank
(
Φq)= rank

(
[D1Âq

1 ,D2Âq
1 ]

)= rank
(
D1Âq

1

)+ rank
(
D2Âq

1

)−dim
(
range

{
D1Âq

1

}∩ range
{

D2Âq
1

})
= 2r −dim

(
range

{
D1Âq

1

}∩ range
{

D2Âq
1

})
.

The last term captures the interplay between the Ds and Âq
1 . We want to find conditions under which this inter-

section is trivial. As we assume Ds is full rank, we can instead ask when range
{

Âq
1

}∩ range
{

D−1
1 D2Âq

1

}
is trivial.

Loosely speaking, when is multiplication by a diagonal matrix enough to perturb a subspace out of alignment with
itself?

Next, we define a notion of uniqueness modulo the ISAM nullspace.

Definition 3. The solution to s̄q =Φqp̄q is said to be unique within the optical passband ifΦqx =Φqy =⇒ x−y ∈ N̄q.

Equivalently, there is a unique p̄q ∈ (
N̄q

)⊥
such that s̄q =Φqp̄q.

This definition sets up an equivalence relation on the spatial densities: we treat two spatial densities as equiv-
alent if their difference lies in N̄q, the null space of the ISAM matrices. This is the component to which we are
inherently are blind even in the single species case.

Next, we cast the problem into a form where we implicitly work in the optical passband
(
N̄q

)⊥
. Let Vq ∈CNz×r

be a basis for
(
Nq

)⊥. We introduce a new set of matrices: the restricted ISAM matrix B̂q
f , Âq

f Vq ∈ CNk×r is the

restriction of Âq
f to the subspace

(
Nq

)⊥. Clearly, B̂q
f has full column rank. Similarly, IN f ⊗Vq is a basis for

(
N̄q

)⊥
. We

define the restricted N -species matrix

Φ̃q ,Φq(IN f ⊗Vq) ∈CN f Nk×Ns r .
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Figure 5: Comparing (N5) and Theorem 2 for N f = 2 and r = 4. (a) The matrix B̄q. Color denotes the value of k.
Rows with solid (resp. wave-patterned) blocks correspond to measurements at the first (resp. second) focal plane.
(b) Condition (N5) requires that the sum of the ranks of each 2×4 block of the same color must be at least 4Ns . (c)
A possible partitioning of the rows of B̄q as described in Theorem 2. If both C1 and C2, as defined in (15), have full
rank for generic chemical species the solution to s̄q =Φqp̄q is unique within the optical passband with probability
one.

The question of unique recovery (within the optical passband) is determined entirely by this matrix, as stated in
the following result.

Lemma 1. LetΦq ∈CN f Nk×Ns Nz and rank
(
Âq

f

)
= r for f ∈ [N f ]. The following statements are equivalent:

(C1) There is a unique p̄q ∈ (
N̄q

)⊥
such that s̄q =Φqp̄q

(C2) null
{
Φq

}= N̄q

(C3) rank
(
Φ̃q

)= Ns r .

We defer the proof to Appendix A.
We can construct the restricted N -species matrix Φ̃q using the Khatri-Rao product. Let B̄q ∈ CN f Nk×r be the

matrix formed by stacking the restricted ISAM matrices B̂q
f into a single block column: B̄q , [(B̂q

1 )T, . . . , (B̂q
N f

)T]T.

Recall H̄ = (1TN f
⊗H) = [HT, . . . ,HT] ∈CN f Nk×Ns . Now,

Φ̃q =Φq(IN f ⊗Vq) =


D1Âq

1 Vq . . . DNs Âq
1 Vq

...
. . .

...
D1Âq

N f
Vq . . . DNs Âq

N f
Vq

=


D1B̂q

1 . . . DNs B̂q
1

...
. . .

...
D1B̂q

N f
. . . DNs B̂q

N f

= H̄¯ B̄q, (14)

mirroring the construction ofΦq in Section 4.4.
In what follows, we establish necessary and sufficient conditions for uniqueness within the optical passband.

5.2.1 Necessary Conditions for Uniqueness

Theorem 1. The solution to s̄q =Φqp̄q is unique within the optical passband only if

(N1) Nk N f ≥ Ns r

(N2) The spectral profiles are linearly independent (rank(H) = Ns )

(N3) No row of B̄q is orthogonal to all remaining rows

(N4) For every subset J ⊂ [Nk ] with Ns ≤ |J | < Ns r /N f and rank
(
HJ

)= Ns , we have rank
(
HJ c

)
≥ Ns − N f

r |J |

(N5)
∑Nk

i=1 rank

([
B̂q

1 [i , : ]T, . . . , B̂q
N f

[i , : ]T
]T)

≥ Ns r .
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We defer the proof to Appendix A. Let us pause to interpret these conditions.
In the single-species case, (N1) reduces to Nk ≥ r ; i.e. we must measure enough wavenumbers such that the

single-species ISAM problem is well-posed. Interestingly, (N1) does not require that N f ≥ Ns : recovery of Ns

species is possible from a single focal plane, provided the measurements are oversampled in wavenumber. This
behavior can be seen in the numerical experiments described in Section 5.3

Condition (N2) is unsurprising. If the spectral profiles are linearly dependent, the N -species representation of
a susceptibility is not unique and the spatial densities cannot be uniquely determined.

Condition (N3) is less transparent, but can be argued to hold by the underlying physics. If (N3) is violated, there
must be an object that scatters at only one of the measured wavenumbers and is non-scattering for the rest. In the
continuous setting, scattered fields are analytic functions of k; thus if an object is non-scattering over an interval of
wavenumbers, it must be non-scattering for all k [37, 38]. In the discretized setting we lose the analytic properties
of scattered waves. In numerical simulations, however, condition (N3) holds.

Condition (N4) requires the spectral profiles to be sufficiently diverse: linear independence is not enough. As
an example, consider Ns = 2, N f = 1, and take h1 = [1,1, . . . ,1]T and h2 = [2,1, . . . ,1]T. These spectra are linearly
independent, but D1Âq

1 and D2Âq
1 differ by only one row; thus rank

(
Φ̃q

) ≤ r +1, failing (C3) of Lemma 1. Spectral
diversity is necessary to push range

{
D1Âq

1

}
out of alignment with range

{
D2Âq

1

}
. “Good” spectral profiles are not

too concentrated on any small set of indices.
The final condition, (N5), is a requirement on the diversity of measurements comprising the restricted ISAM

matrices. When Nk N f = Ns r , (N5) requires that the collection of measurement vectors corresponding to a given
wavenumber be linearly independent: each new focal plane must provide new and informative measurements.
This partitioning is illustrated in Fig. 5.

5.2.2 Sufficient Condition for Uniqueness

First, we note that no conditions on B̄q or H independently are sufficient to ensure there is a unique solution within
the optical passband. Consider again the two-species, one focal plane case: Φ̃q = [D1B̂q

1 ,D2B̂q
1 ], with Di = diag(hi ).

Suppose h1 is fixed and choose vectors w,v ∈ Cr such that no entry of B̂q
1 v is zero. Set h2 = (D1B̂q

1 w)/(B̂q
1 v) where

the division is taken elementwise. With this construction, D2B̂q
1 v = D1B̂q

1 w, and thus rank
(
Φ̃q

)≤ 2r −1, failing (C3)
of Lemma 1.

These spectral profiles were carefully chosen to make Φ̃q lose rank. Fortunately, we are unlikely to encounter
such objects in practice. The following definition makes this argument precise.

Definition 4. A property that depends on the spectral profiles H ∈ CNk×Ns is said to hold generically, or for generic
H, if the set for which it fails to hold has Lebesgue measure zero and is nowhere dense in CNk×Ns .

If a property that holds generically, it holds with probability one if the spectral profiles are drawn independently
from a distribution that is absolutely continuous with respect to the Lebesgue measure in CNk×Ns ; for instance,
when the entries of H are drawn i.i.d. from the Gaussian distribution. Moreover, the property exhibits a degree of
robustness: if it holds for a particular H′, then it holds in an open ball around H′ and will continue to hold given
sufficiently small perturbations to H′.

Theorem 2. Suppose Nk ≥ r and N f ≥ Ns . If there exists a collection {Ji ⊂ [Nk ]}
N f

i=1 of disjoint sets, each of cardinality
|Ji | = r /N f , such that

Ci ,


B̂q

1 [Ji , : ]
...

B̂q
N f

[Ji , : ]

 ∈Cr×r (15)

is full rank for each i ∈ [N f ], then for generic H the solution to s̄q =Φqp̄q is unique within the optical passband.

An illustration of the matrices Ci is shown in Fig. 5(c). Note that the necessary condition (N5) coincides with
the sufficient condition of Theorem 2 in the case of Nk = N f = r = Ns , which is the limit of scanning confocal
spectroscopic acquisition discussed in Section 1.

Theorem 2 can be stated in terms of a more familiar, but more restrictive, property on B̄q.

Definition 5. The Kruskal (row) rank of a matrix X ∈ Cn×m , written krank(X), is the largest k such that every set of
k rows of X are linearly independent. The matrix X is said to have full Kruskal rank if krank(X) = max{n,m}.
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Corollary 1. If B̄q ∈CNk N f ×r has full Kruskal rank, then for generic H the solution to s̄q =Φqp̄q is unique within the
optical passband.

5.2.3 Related Problems

The Khatri-Rao structure of Φq provides a link between the N -species inverse problem and topics in tensor fac-
torization, communications, and sensor networks, among others [39–45]. For example, the rank and Kruskal rank
of the Khatri-Rao product has implications for the uniqueness of certain tensor factorizations. Properties of the
Khatri-Rao product are an active area of research. For generic matrices X and Y, it is known that krank(X¯Y) =
krank(X)krank(Y) . Bhaskara et al. provide bounds on the smallest singular value of the Khatri-Rao product of ran-
dom matrices [44]. Recent work has investigated the restricted isometry property of the Khatri-Rao product of
random matrices [40–42].

These results do not directly apply to the problem at hand. We are interested in properties of Φ̃q = H̄¯B̄q. As B̄q

is determined by the physics and imaging geometry, we cannot choose this matrix generically or randomly. Even
H̄ cannot be chosen generically, as H̄ = (1TN f

⊗H); only the matrix H can be chosen generically. Translating new

results on the Khatri-Rao product to our setting remains a topic for further investigation.

5.3 Stability And Conditioning of (P1)

The results of the previous section tell us that the solution to s̄q =Φqp̄q is almost always unique (within the optical
passband), but say little about the stability of the problem. We must always deal with “noisy” measurements– not
just instrumentation noise, but also “noise” due to modeling error, e.g. multiple scattering and spatial-spectral
coupling not captured by the N -species model.

In this section, we numerically investigate the behavior of the singular values of the N -species matrix Φ for
the case three-species case (Ns = 3) in two spatial dimensions. We use the computational parameters listed in
Table 1, except for NA and N f , which vary. The singular values of the ISAM matrix formed using these compu-
tational parameters were investigated in Section 5.1 and plotted in Fig. 4. The spectral profiles used—caffeine,
acetaminophen, and warfarin—are shown in Fig. 8.

We computed the singular values of each block-matrix Φq (12) and plot the results in Fig. 6. Recall that the
continuous Fourier frequency kx is determined from the DFT index qx using (10). As expected, higher transverse
spatial frequencies are present as NA increases. Only the first N f re singular values are appreciable. The low-
frequency components achieve rank 3re for N f = 3, and adding focal planes improves the conditioning ofΦ. Note
that even in the case of a single focal plane, the 3re -th singular value of Φ0 is non-zero; as previously discussed,
N f ≥ Ns is not necessary for a unique solution.

We investigated the singular values of the block corresponding to kx = 0 for a variety of chemical species and
a varying number of focal planes. We used a library of 20 experimentally acquired chemical spectra1 provided
through the IARPA SILMARILS project. We randomly selected three species from the library, formedΦ0, and com-
puted the singular values of this matrix. We scaledΦ0 to have unit spectral norm. This procedure was repeated for
200 realizations. The resulting singular values are plotted in Fig. 7; the borders of the shaded region are the best
and worst realizations for each choice of N f .

We repeated the same procedure using random spectral profiles. The real part of the spectral profile was drawn
i.i.d. from the standard normal distribution and the imaginary part was chosen uniformly over [0,1]. The results
are plotted in Fig. 7. Clearly, these un-physical spectra lead to better conditioned Φ0, and there is little difference
in the best and worst realizations. Study of the system using random spectral profiles may lead to a useful upper
bound on system performance.

5.4 Algebraic Conditions for (P2)

We now focus on the case (P2), wherein the target comprises Ns chemical species drawn from a “dictionary” of
Ms > Ns possible spectra. This problem can be viewed as an instance of (P1), in which case Theorem 1 requires
that number of focal planes is chosen such that N f Nk ≥ Ms r . This is undesirable if Ms is much larger than Ns .

1These include caffeine, acetaminophen, warfarin, monosodium glutamate (MSG), sucrose, naproxen, potassium chlorate, polyvinylidene
fluoride (PVDF), aspartame, lactose, melatonin, ethylenediaminetetraacetic acid (EDTA), creatine, diazepam, biotin, fructose, pectin, glycine,
beta carotene, hydroxypropyl cellulose.
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Figure 6: Singular values of Φq as a function of kx (q). Three species are present: caffeine, acetaminophen, and
warfarin. System parameters listed in Table 1.

This approach ignores the constraint that only Ns chemicals are present in the sample; by incorporating this side
information, we relax the condition on N f . This structure is known as block sparsity.

Definition 6. The block vector x = [xT1 ,xT2 , . . . ,xTMs
]T is said to be block-K sparse if the set {i : ‖xi‖2 > 0} has cardinal-

ity at most K .

Block sparsity is a natural fit for this problem; we define the s-th block to be the s-th spatial density p̂s , corre-
sponding to the s-th species in the dictionary. Note that block sparsity does not require the blocks themselves (i.e.,

the
{

p̂s
}Ns

s=1) to be sparse.
Conditions for unique recovery of block-sparse vectors have been studied [46–49]. Eldar and Mishali [48] de-

veloped a straightforward condition for unique recovery that is useful to the problem at hand:

Lemma 2. [48, Proposition 1] There is a unique block-Ns sparse solution to s̄q =Φqp̄q if and only ifΦqv 6= 0 for any
non-zero v that is block-2Ns sparse.

We can easily translate Lemma 2 into this setting.

Theorem 3. For generic H, within the optical passband there is a unique block-Ns sparse vector p̄q consistent with
measurements s̄q =Φqp̄q if Nk > r , N f ≥ 2Ns , and B̄q contains 2Ns disjoint sets of linearly independent rows, each
of cardinality r = rank

(
B̄q

)
.

Proof. Let v be a block-2Ns sparse vector. Let J = [ j1, . . . , j2Ns ]T ∈ Z2Ns index the non-zero blocks of v. The vector
vJ ∈ C2Ns Nz contains the non-zero elements of v. The matrix Φq

J ∈ CN f Nk×2Ns Nz is the restriction of Φq to the 2Ns

columns indexed by J .
By assumption, B̄q satisfies the conditions of Theorem 2 and Φq

J is generically full column rank. Thus, for

generic H, we haveΦqv =Φq
J vJ 6= 0. Applying Lemma 2 completes the proof.
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Figure 7: Singular values of Φ0 for various combinations of chemical species. The shaded area lies in between
the best and worst realizations. System parameters listed in Table 1. Top: singular values using experimentally
acquired spectral profiles. Bottom: singular values using random Gaussian spectral profiles.

5.5 Computational Recovery

In the single-species case, the approximate form of the ISAM operator (Section 2.2) provides a non-iterative recon-
struction based on Fourier resampling [50]. This does not carry over to the multi-species case and we must instead
use an iterative approach.

To ease notation, define p̂s , vec
(
P̂s

)
. We recover the collection of spatial densities by solving the penalized

least squares problem

argmin
{p̂1,...,p̂Ns }

1

2

∑
q
‖s̄q −Φqp̄q‖2

2 +R
(
p̂1, . . . , p̂Ns

)
. (16)

The first term is known as the data fidelity term. It ensures the observed data and “re-imaged” solution are consis-
tent. More sophisticated data fidelity terms can be used to model the effects of shot noise, background signal, and
more [51], but these are beyond the scope of this work.

The functional R : CNs×Nx×Nx×Nz → R regularizes the inverse problem and encodes any constraints or a priori
assumptions regarding the spatial densities. Tikhonov regularization corresponds to R

(
p̂1, . . . , p̂Ns

) = ∑Ns
s=1‖p̂s‖2

2.

Alternatively, solutions that are sparse in a transform domain are obtained by setting R
(
p̂1, . . . , p̂Ns

)=∑Ns
s=1‖Cp̂s‖1.

where C is a sparsifying transform, e.g. a wavelet transform. Finally, the mixed `1/`2 norm
∑Ns

s=1‖p̂s‖2 encourages
solutions that are block-sparse; that is, solutions with a minimal number of active species. The non-negative scalar
λr balances the influence of the data fidelity and regularization terms.

The method used to solve (16) depends on the chosen regularizer. In the case of Tikhonov regularization, (16)
reduces to the solution of the linear system((

Φq)H
Φq +λr I

)
p̄q = (

Φq)H s̄q

for each q ∈ [Nx ]2. The conjugate gradient algorithm works well in practice and requires only matrix-vector prod-

ucts with Φq and
(
Φq

)H. These matrices are not explicitly formed; only the coefficients Âq
f [q,m,n] in (9) are pre-

computed and stored. Similarly, the matrices Ds are not formed; only the spectral profiles are stored, and products
with Ds are computed by elementwise multiplication. The vector ȳq =Φqp̄q consists of blocks ŷq

f ∈CNk for f ∈ [N f ],

with

ŷq
f =

Ns∑
s=1

Ds Âq
f p̂q

s .
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Nx 192 Lx 423.6µm ∆x 2.2µm
Nz 384 Lz 282.4µm ∆z 0.7µm
Nk 384 kmin 0.4 rad ·µm−1 kmax 1.1 rad ·µm−1

re 60 λmin 5.9µm−1 λmax 15.4µm−1

N f 3 z f [70,140,211]µm NA 0.4

Table 1: Parameters for point target simulations.

Similarly, w̄q = (
Φq

)H ȳq consists of blocks ŵq
s with s ∈ Ns , where the block is computed as

ŵq
s =

N f∑
f =1

(Âq
f )HDH

s ŷq
f .

Many sparsity-promoting regularizers are non-differentiable. In this case, proximal methods such as FISTA [52] or
the Alternating Direction Method of Multipliers (ADMM) [53–55] are attractive. This class of algorithms decom-
poses the problem (16) into a sequence of simpler subproblems. The solution of a linear system is often a key
ingredient of such algorithms.

6 Simulations

We now describe two simulations used to validate the proposed approach. For simplicity, we consider only two
spatial dimensions: one transverse (x) and one axial (z).

Preliminary work on the N -species model suffers from three unrealistic assumptions [15]. The simulations
used unrealistic wavelength ranges, leading to nearly complete coverage of Fourier space. This removes the large
null space present in A f and simplifies the reconstruction problem. Secondly, the phantoms used satisfied the N -
species model exactly; no spectral noise was considered. Finally, the synthetic data used in the simulations were
generated using the asymptotic approximation to the ISAM operator, and thus under the first Born approxima-
tion. This neglects multiple scattering, absorption, and the discrepancy between the exact and approximate ISAM
models. As a consequence, the simulations present an overly optimistic view of the proposed imaging modality.

We generate synthetic data using accurate physical models and system parameters. These data include mul-
tiple scattering and absorption effects—only the inversion is performed under the Born approximation. Further,
the simulated targets do not precisely follow the N -species model; instead, there are position-dependent spectral
variations within each species. In particular, we simulate an object of the form η(r,k) = ∑Ns

s=1 ps (r)hs (r,k), where
hs (r,k) = hs (k)+es (r,k) and es (r,k) ∼ CN (0,ξs ) is a circular complex Gaussian random variable [56].

The minimization problem (16) is solved on an NVidia Titan X GPU using a combination of Python and CUDA
[57, 58].

6.1 Point Targets

We formed a spectral library of five chemicals using refractive index data provided through the IARPA SILMARILS
project. The corresponding spectral profiles are plotted in Fig. 8. The target consisted of 50 point scatterers. Each
point scatterer is associated to one chemical species; only three species (out of the five possible) are present. We
do not know a priori which chemicals are present.

We generated measurements using the Foldy-Lax model, which includes multiple scattering effects [59]. Data
were generated at three focal planes in a 420×280 µm volume according to the parameters in Table 1. The source
power spectrum was flat over [kmin,kmax]. This combination of parameters—three active species, three focal
planes, and a library of five possible species—corresponds to the case of (P2).

To assess the deviation from the single scattering model, we generated two sets of measurements using the
same target. The first set of measurements, denoted s, uses the Foldy-Lax method and incorporates multiple scat-
tering. The second, sB , is generated using the Born approximation and thus includes only single scattering events.
The ratio ‖s−sB‖2/‖sB‖2 indicates that more than 20% of the energy in s comes from multiple scattering events.

We performed two sets of simulations: the first using Tikhonov regularization and the second using sparsity-
promoting regularization. In the latter case, motivated by the spatial-domain sparsity of the target, we set R(P) =
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Figure 8: Spectral profiles for the five chemicals used in point scattering simulations.

∑5
s=1‖ps‖1. In the Tikhonov case, we performed 300 iterations of conjugate gradient on the normal equations with

λr = 10−5. In the case of `1 regularization, we used 2000 iterations of the FISTA algorithm with λr = 10−3. Both
cases terminated in under one minute.

The magnitude of the reconstructed spatial densities are shown in Fig. 9. Recall that the surface of observable
Fourier components is restricted to kz < 0. As such, any linear reconstruction method (e.g., Tikhonov-regularized
least squares) will produce a complex-valued image; we display only the magnitude and squared magnitude of
the recovered signal. For visualization purposes we have projected the point-target phantom onto the optical
passband. In both cases, the reconstructed targets are correctly spatially localized and identified with the correct
species.

The Tikhonov regularized reconstruction consists of the point scatterers sitting on top of a “noisy” background.
The background is primarily due to multiple scattering effects and spectral variations which are not captured by
the forward model. This background term is distributed across all five possible species; however, the recovered
point scatterers are associated to the correct species. The background is eliminated when viewing the squared
modulus of the reconstruction.

The `1 regularized reconstruction suppresses the background term. There is nearly perfect agreement between
the true target and the reconstructed target, despite taking data at only three, rather than five, focal planes. The
sparsity of the target, coupled with the `1 regularization, successfully eliminates artifacts due to multiple scatter-
ing.

For visualization purposes we map the three active species to the red, green, and blue channels of an RGB
image. The filtered phantom, Tikhonov, and filtered `1 reconstructions are shown in Fig. 10.

6.2 Cell Phantom

Nx 256 Lx 150.0µm ∆x 0.6µm
Nz 256 Lz 150.0µm ∆z 0.6µm
Nk 256 kmin 0.7 rad ·µm−1 kmax 2.1 rad ·µm−1

re 67 λmin 3.0µm−1 λmax 9.0µm−1

N f 3 z f [54,75,96]µm NA 0.5

Table 2: Parameters for cell phantom simulation.
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Figure 10: Visualizing the reconstructed point targets by assigning the three active species to a RGB channel. Red:
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Next, we evaluated the ability to image extended targets. The target is the cellular phantom shown in Fig. 11a,
which comprises three chemical species. The spectral library contains five total species.

We generated synthetic measurements by solving the Lipmann-Schwinger equation (see, e.g., [59]) using the
using the Multi-Level Fast Multipole Algorithm (MLFMA) [60]. The data are not generated under the Born ap-
proximation, and thus includes multiple scattering and absorption phenomenon not captured using the forward
model. We use a version of the MLFMA specialized for simulating two spatial dimensions [61, 62].

We generated measurements for only three focal planes; the relevant computational parameters are listed in
Table 2. We generated synthetic spectral profiles using a sum-of-Lorentzians model [63]. Each spectral profile is of
the form

h(k),σ0 +
99∑

n=1

σn

ν2
n −k2 − iγnk

,

with σ∼ Unif[0,0.1], ν∼ Unif[1.2π,4.4π], and γ∼ Unif[2π×10−3,4π×10−2], where Unif[a,b] is the uniform distri-
bution over the interval [a,b]. The spectral profiles are plotted in Fig. 11b.

The first-order Born approximation is valid only if the total phase change between the incident field and the
field inside the sample is less than π—this implies that the object should be either weakly scattering or small
in spatial extent [64, 65]. The proposed phantom is neither. To investigate the effect on scattering strength on
the reconstructed images, we generated synthetic measurements for the scaled object δη(r0,k) where 0 < δ ≤
1. By reducing δ, we reduce the scattering strength and eventually fall into a regime where the first-order Born
approximation holds.

We used Tikhonov regularization with λr = 1×10−4 and 500 iterations of the conjugate-gradient algorithm.
The resulting reconstructions are shown in Fig. 12. The top row illustrates the projection of the phantom onto the
optical passband; this serves as the “gold standard” for Tikhonov-regularized reconstructions. The remaining rows
are the reconstructed images. As expected, only the edges of the phantom that are nearly perpendicular to the
optical axis are visible. The reconstructed images deteriorate as δ increases, particularly at the rear edge of each
feature. However, the correct species is identified in each case; negligible energy is deposited into Species 4 and 5.

Fig. 13 illustrates the influence of the regularization parameter λr . Noise dominates the reconstruction when
λr is too small. When λr is too large, there is no chemical identification- the recovered spatial densities are nearly
identical for each species.

7 Conclusions

We have considered the problem of chemically specific and spatially resolved tomographic imaging from interfer-
ometric measurements. We require the target to be the linear combination of a finite number of distinct chemical
species given data at a small number of en-face focal planes. We developed necessary and sufficient conditions for
unique recovery of a target satisfying this model. Linear independence of the chemical spectra is not sufficient—
additional spectral diversity is required.

In this paper, we assume the chemical spectra were either known or drawn from a library of possible spectra.
In the latter case, the number of required focal planes scales with the number of chemicals present in the sample,
not the total number in the library. Future work will consider extension fully blind problem.

Our approach requires interferometric (phase-resolved) measurements and solves the linearized scattering
problem. This extension to intensity-only measurements and the removal of the Born approximation are two
avenues for future work.

Phaseless, intensity-only diffraction tomography has been demonstrated by modifying the acquisition scheme
[66–68] and by optimization-based approaches [69]. Advances in high performance computing [61, 62, 70] and
deep learning [71–73] have facilitated the solution of large scale inverse scattering problems without linearization.
In some cases, solving the nonlinear inverse scattering problem overcomes the “missing cone” effect that hampers
reconstruction of extended targets. However, thus far, these approaches have only considered non-dispersive ob-
jects. Extension of these methods to spectroscopic tomography within the N -species approximation is an exciting
area of future work.
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the three focal planes. All units are µm. (b)Spectral profiles for cell phantom, plotted for δ= 1.
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A Proof of Main Theorems

Proof of Lemma 1. (C1) =⇒ (C2): Let p̄q ∈ (
N̄q

)⊥
be the unique solution to s̄q = Φqp̄q. Let x ∈ null

{
Φq

}∩ (
N̄q

)⊥
.

NowΦq(p̄q +x) =Φqp̄q = s̄q. As x+ p̄q ∈ (
N̄q

)⊥
, by (C1) x = 0. Thus (C1) =⇒ (C2).

(C2) =⇒ (C3): Recall Φ̃q = Φq(IN f ⊗Vq) ∈ CN f Nk×Ns r . As IN f ⊗Vq is a basis for
(
N̄q

)⊥
, and null

{
Φq

} = N̄q by

assumption, Φ̃qx = 0 if and only if x = 0; thus null
{
Φ̃q

}= {0}. By the rank nullity theorem, rank
(
Φ̃q

)= Ns r .

(C3) =⇒ (C1): Suppose ∃u,v ∈ (
N̄q

)⊥
such that Φqu = Φqv. As IN f ⊗Vq is a basis for

(
N̄q

)⊥
, there are unique

vectors x,y such that u = (IN f ⊗Vq)x and v = (IN f ⊗Vq)y. Now 0 =Φq(u−v) = Φ̃q(x−y) =⇒ x = y as Φ̃q is full column
rank; thus u = v, completing the proof.

The following lemma regarding the rank of the Khatri-Rao product will prove useful:

Lemma 3. Given A ∈Cm×n1 and B ∈Cm×n2 , rank(A¯B) ≤ min(m, rank(A)rank(B)).

Proof. As A¯B ∈ Cm×n1n2 , we have rank(A¯B) ≤ min(m,n1n2). Note that A¯B contains a subset of rows of the
matrix A⊗B. As the rank of the Kronkecker product is equal to the product of the ranks of A and B (e.g., [74]), we
have rank(A¯B) ≤ rank(A⊗B) = rank(A)rank(B).

Proof of Theorem 1. Here, we suppress the superscript q. By Lemma 1, it suffices to show that the proposed condi-
tions are necessary for Φ̃ to have rank Ns r . (N1) follows as Φ̃ can have rank Ns r only if Nk N f ≥ Ns r .

We show (N2) by contradiction; suppose rank(H) = q < Ns . By construction rank
(
H̄

) = rank(H). Thus by
Lemma 3, rank

(
Φ̃

)≤ rank
(
H̄

)
rank

(
Āq

)≤ r q < Ns r .
For (N3), suppose the first row of B̂ is orthogonal to the remaining Nk N f rows. Let x be a column vector formed

from first row of B̂ and let e1 , [1,0, . . . ,0] ∈CNk N f ; by construction, B̂x = e1. Set α=∑Ns
s=2 hs [1]/h1[1]; then

Φ̃ [−αxT,xT, . . . ,xT]T = diag

{
Ns∑

s=2
hs −αh1

}
e1 = 0,

and so rank(Φ) ≤ Ns r −1.
To show (N4), suppose there is a subset J with |J | ≥ Ns such that H[J , : ] ∈C|J |×Ns is rank Ns and the remaining

rows, H[J c , : ] ∈ CNk−|J |×Ns has rank q < Ns . Define Φ̃J ∈ CN f |J |×Ns r to be the rows of Φ̃ involving the rows of H
indexed by J ; that is,

Φ̃J =

 H[J , : ]¯ B̂1[J , : ]
...

H[J , : ]¯ B̂N f [J , : ]

 ,

and construct Φ̃J c ∈CN f (Nk−|J |)×Ns r using the rows indexed by J c . As both B̂[J , : ] ∈CN f |J |×r and B̂[J c , : ] ∈CN f (Nk−|J |)×r

have rank at most r , by Lemma 3, we have

rank
(
Φ̃

)≤ rank
(
Φ̃J )+ rank

(
Φ̃J c

)
≤ min

(
N f |J | , Ns r

)+min
(
N f (Nk −|J |), qr

)
,β.

We wish to establish conditions such that β ≥ Ns r . This is clearly true, regardless of q , when N f |J | ≥ Ns r . When
|J | < Ns r /N f , we have

β= N f |J |+min
(
N f (Nk −|J |), qr

)
.
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Suppose N f (Nk −|J |) < qr ; then β= N f Nk ≥ Ns r where the inequality follows from condition (N1). Otherwise, if
N f (Nk −|J |) ≥ qr , then β= N f |J |+qr and q ≥ Ns −N f |J |/r implies β≥ Ns r .

To show (N5), for each i ∈ [Nk ] we define the index set Ji =
{
i , i +Nk , . . . , i + (N f −1)Nk

}
; now,

Φ̃Ji = (1TN f
⊗ H̄[Ji , : ])¯ B̄[Ji , : ] =

 h1[i ]B̂1[i , : ] h2[i ]B̂1[i , : ] . . . hNs [i ]B̂1[i , : ]
...

...
...

h1[i ]B̂N f [i , : ] h2[i ]B̂N f [i , : ] . . . hNs [i ]B̂N f [i , : ]

 ∈CN f ×Ns r .

Now, rank
(
Φ̃

)≤∑Nk
i=1 rank

(
Φ̃Ji

)≤∑Nk
i=1 rank

(
B̂[Ji , : ]

)
, where the final inequality follows from Lemma 3 and rank

(
(1TN f

⊗H[Ji , : ])
)
=

1. Setting this upper bound to Ns r gives the statement.

Proof of Theorem 2. We omit the superscript q. It suffices to prove the case where Φ̃ is square, Nk = r and N f = Ns .
Then rank

(
Φ̃

) ∈CNs r×Ns r = Ns r if and only if

θ(H), detΦ̃= det[H̄¯ B̄] 6= 0.

Now, θ(H) is a multivariate polynomial in the entries of H whose coefficents depend only on the entries of B̄. Thus
θ(H) is either identically zero or its zero set is an affine algebraic set and thus a nowhere dense set of measure zero.
It suffices to show θ(H) 6= 0 for a single choice of H (see, e.g., [75–77] and references therein).

We can permute the rows of Φ̃ such that the first Nk rows are indexed by J1, the next Nk rows by J2, and so on.
In particular, there is a permutation matrixΠ ∈CNk Ns×Nk Ns such that (c.f. (14))

ΠΦ̃=



D1[J1, J1]B̂1[J1, : ] . . . DN f [J1, J1]B̂1[J1, : ]
...

...
D1[J1, J1]B̂N f [J1, : ] . . . DN f [J1, J1]B̂N f [J1, : ]
D1[J2, J2]B̂1[J2, : ] . . . DN f [J2, J2]B̂1[J2, : ]

...
. . .

...
D1[JN f , JN f ]B̂N f [JN f , : ] . . . DN f [JN f , JN f ]B̂N f [JN f , : ]


=


ĎJ1

1 C1 . . . ĎJ1
N f

C1

ĎJ2
1 C2 . . . ĎJ2

N f
C2

...
. . .

...

Ď
JN f

1 CN f . . . Ď
JN f

N f
CN f

 ,

where, in an abuse of notation, we write ĎJ
i = (1TN f

⊗Di [J , J ]).

Next, we specify the choice of H. By assumption, r = Nk = mN f for some integer m. For each i ∈ [Ns ], we

set hi [Ji ] = 1m and set remaining coordinates are set to zero. With this construction, Ď
J j

i = Im if i = j ; otherwise,

Ď
J j

i = 0m . Now

ΠΦ̃=


C1 0m . . . 0m

0m C2 . . . 0m
...

...
. . .

...
0m 0m . . . CN f

 ,

that is, Φ̃ is similar to a block diagonal matrix. As each block along the diagonal is full rank by assumption, Φ̃ is full
rank.
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