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Abstract

Magnetic resonance imaging (MRI) is widely used in clinical practice, but it has been traditionally

limited by its slow data acquisition. Recent advances in compressed sensing (CS) techniques for MRI

reduce acquisition time while maintaining high image quality. Whereas classical CS assumes the images

are sparse in known analytical dictionaries or transform domains, methods using learned image models

for reconstruction have become popular. The model could be pre-learned from datasets, or learned

simultaneously with the reconstruction, i.e., blind CS (BCS). Besides the well-known synthesis dic-

tionary model, recent advances in transform learning (TL) provide an efficient alternative framework for

sparse modeling in MRI. TL-based methods enjoy numerous advantages including exact sparse coding,

transform update, and clustering solutions, cheap computation, and convergence guarantees, and provide

high-quality results in MRI compared to popular competing methods. This paper provides a review

of some recent works in MRI reconstruction from limited data, with focus on the recent TL-based

methods. A unified framework for incorporating various TL-based models is presented. We discuss the
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connections between transform learning and convolutional or filterbank models and corresponding multi-

layer extensions, with connections to deep learning. Finally, we discuss recent trends in MRI, open

problems, and future directions for the field.

Index Terms

Sparse signal models, Convolutional models, Transform learning, Dictionary learning, Structured

models, Compressed sensing, Machine learning, Physics-driven deep learning, Multi-layer models, Effi-

cient algorithms, Nonconvex optimization, Magnetic resonance imaging, Computational imaging.

I. INTRODUCTION

Magnetic resonance imaging (MRI) is a widely used imaging modality in routine clinical practice. It

is noninvasive, nonionizing, and offers a variety of contrast mechanisms and excellent visualization of

both anatomical structure and physiological function. However, a traditional limitation of MRI affecting

both throughput (scan time) and image resolution, especially in dynamic imaging, is that it is a relatively

slow imaging technique because the measurements are acquired sequentially over time.

Recent advances in MRI include improved pulse sequences for rapid acquisition, ultra-high field imag-

ing for improved signal-to-noise ratio, and hardware-based parallel data acquisition (P-MRI) methods [1,

2]. P-MRI enables acquiring fewer Fourier, or k-space, samples by exploiting the diversity of multiple RF

receiver coils, and is widely used in commercial systems and clinical applications. Compressed Sensing

(CS) methods [3, 4] have also been successfully applied to MRI [5] to significantly reduce the number of

samples and corresponding acquisition time needed for accurate image reconstruction. CS theory enables

the recovery of images from significantly fewer measurements than the number of unknowns by assuming

sparsity of the image in a known transform domain or dictionary, and requiring the acquisition to be

appropriately incoherent with the transform; albeit at the cost of a nonlinear reconstruction procedure.

In practice, CS-based MRI methods typically use variable density random sampling schemes during

acquisition [5] (see Fig. 1) along with sparsifying models such as wavelets and finite difference operators.

In 2017, the FDA approved the use of CS-based MRI in clinical practice.

While early CS MRI methods exploited sparsity in analytical dictionaries and transform domains, recent

years have seen growing interest in learning the underlying MR image models for reconstruction [6]. The

models may be learned from a corpus of data, or jointly with the reconstruction (i.e., blind compressed
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Cartesian Radial 2D random

Fig. 1. Examples of under-sampling in k-space using Cartesian, Radial (from [14]), and 2D random patterns. Schemes such
as 2D random or pseudo-radial [6] sampling are feasible when data corresponding to multiple image slices are jointly acquired
and the frequency encode direction is perpendicular to the image plane.

sensing) [6, 7]. The latter approach provides high data-adaptivity, but requires more complex and typically

highly nonconvex optimization. Recent methods even train iterative learning-based algorithms in a super-

vised manner using training pairs of ground truth and undersampled data [8–10]. In this review paper, we

first discuss early sparsity and low-rank model-based techniques for CS MRI, followed by later advances,

particularly in learning-based methods for MRI reconstruction. We focus mainly on sparsifying transform

learning (TL) based reconstruction [7, 11] models and schemes, which offer numerous advantages such

as cheap computations; exact sparse coding, clustering and other updates in algorithms; convergence

guarantees; ease in incorporating a variety of model properties and invariances; and effectiveness in

reconstruction. Importantly, these methods also produce state-of-the-art results in applications [12, 13],

under a common umbrella. We review various TL-based methods and models under a unified framework,

and illustrate their promise over some competing methods. We also consider the connections of TL

methods and multi-layer extensions, to neural networks and discuss recent trends, open questions, and

future directions in the field. The goal of this paper is not to provide a comprehensive review of all classes

of MRI reconstruction methods, but rather to focus on the recent transform learning class of techniques

and elucidate their properties, underlying models, benefits, connections, and extensions.

The rest of this article is organized as follows. Section II reviews sparsity and low-rank based CS

MRI approaches, followed by learning-based methods including TL-based schemes. Section III provides

a tutorial on TL-based MRI. Section IV discusses interpretations of transform learning-based methods

and extensions, along with new research directions and open problems. We conclude in Section V.

II. CS MRI RECONSTRUCTION: FROM NONADAPTIVE METHODS TO MACHINE LEARNING

MRI reconstruction from limited measurements is an ill-posed inverse problem, and thus effective

models or priors on the underlying image are necessary for accurate image reconstruction. CS MRI
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Fig. 2. Timeline for evolution of Classical CS MRI (with analytical models) to recent learning-based CS MRI methods. Only
limited papers are included as examples among each class of methods (categories are not strictly chronological).

methods use random sampling techniques that create incoherent or noise-like aliasing artifacts when the

conventional (zero-filling) inverse FFT reconstruction is used. Image models and corresponding penalty

functions (i.e., regularizers), such as those based on sparsity, are used to effectively remove the artifacts

during reconstruction. This section surveys some of the progress in MRI reconstruction from limited

or CS data starting with early approaches based on analytical sparsity and low-rankness, followed by

recent advances in learning-based MRI reconstruction. A timeline for evolution of classical CS MRI to

learning-based CS MRI in past years, with some representative works in each class is presented in Fig. 2.

A. Sparsity and Low-rank Models in MRI

Early CS MRI approaches assumed that MR images are sparse under analytical transforms [4, 15],

such as wavelets [5], contourlets, or total variation (TV) [5]. Later works incorporated more sophisticated

models into the reconstruction framework. Examples include exploiting self-similarity of MR images via

Wiener filtering to improve reconstruction quality [16], the balanced sparse model for tight frames [17, 18],

and the Patch-Based Directional Wavelets (PBDW) [19] and PAtch-based Nonlocal Operator (PANO) [20]

methods that use semi-adaptive wavelets and are thus more flexible than traditional wavelets. Low-

rank data models have also been used for MRI reconstruction such as the Partially Separable Functions

(PSF) [21] approach. In dynamic MRI, where the measurements are inherently undersampled, low-rank

models that exploit the temporal correlation of the dynamic image sequence are popular. More recent (also

see [22]) low-rank based methods include the annihilating filter-based low-rank Hankel matrix (ALOHA)

approach and the LORAKS scheme [23].
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B. Data-driven or Learning-Based Models for Reconstruction

Learning-based methods for MRI have shown promising improvements over nonadaptive schemes.

The early dictionary-blind CS MRI method, dubbed DL-MRI [6] used dictionary learning (DL) as a

data-driven regularizer for MRI reconstruction to achieve significantly improved results over previous

nonadaptive schemes. DL-MRI learned a small patch-based synthesis dictionary while simultaneously

performing image reconstruction, thus the model is highly adaptive to the underlying object or patient.

However, each iteration of DL-MRI involved synthesis sparse coding using a greedy algorithm, which

is computationally expensive. Unlike the synthesis dictionary model that approximates image patches

as sparse linear combinations of columns of a dictionary, i.e., an NP-hard sparse coding problem, the

complementary sparsifying transform model assumes that the image patches are approximately sparse in

a transform (e.g., wavelet) domain. A key advantage of this framework is that, unlike synthesis sparse

coding, transform domain sparse coding is a simple thresholding operation [11]. Recent transform learning

(TL) based reconstruction schemes include efficient, closed-form updates in the iterative algorithms [7,

24]. TL models are closely tied to convolutional models [25, 26]. Several TL-MRI schemes have shown

promise for MRI including STL-MRI [24] that learns a square and non-singular transform operator,

UNITE-MRI [7] that learns a union of transforms with a clustering step, FRIST-MRI [27] that learns a

large union of transforms related by rotations, and STROLLR-MRI [12] that combines low-rank modeling

and block matching with transform learning. The latter models can be viewed as hybrid models.

Recent works have also developed efficient synthesis dictionary learning-based reconstruction schemes

such as SOUP-DIL MRI [28], and LASSI [22] that uses a low-rank + learned dictionary-sparse model

for dynamic MRI. The most recent trend involves supervised (e.g., deep) learning of MRI models such

as those based on convolutional neural networks [10, 29–32]. Some of these works incorporate the

measurement forward model (physics) in the reconstruction model that is typically an unrolled iterative

algorithm [8–10]. Supervised learning of TL-MRI models has also shown promise [9, 33].

In this paper, we focus on TL-MRI methods, which offer flexibility and enjoy numerous modeling,

computational, convergence, and performance benefits.
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Methods
Sparse Model Block Supervised Low-Rank

Fixed Directional DL TL Matching Learning Modeling
Sparse MRI [5] 3

PBDW [19] 3 3

LORAKS [23] 3

PANO [20] 3 3

DLMRI [6] 3

SOUPDIL-MRI [28] 3

LASSI [22] 3 3

STL-MRI [24] 3

FRIST-MRI [27] 3 3

STROLLR-MRI [12] 3 3 3

ADMM-Net [8] 3

BCD-Net [9, 33] 3 3

TABLE I
COMPARISON BETWEEN SEVERAL TYPES OF MR IMAGE RECONSTRUCTION METHODS SURVEYED IN THIS WORK.

C. Qualitative Comparison of Different Methods

Table I presents a qualitative comparison of a sample set of methods in terms of the models and

techniques they exploit. While the Sparse MRI method [5] used a fixed sparsifying model, later works

exploited directional features (e.g., PBDW [19], or its recent extension FDLCP [34] that grouped patches

with their directionality and learned corresponding orthogonal dictionaries), block matching (e.g., PANO

[20]), and low-rank modeling (e.g., LORAKS). Methods such as DLMRI, STL-MRI, FRIST-MRI, STROLLR-

MRI, SOUPDIL-MRI, ADMM-Net [8], BCD-Net [9, 33, 35], LASSI [22], etc., all involve model learning.

III. TUTORIAL ON TRANSFORM LEARNING-BASED MRI

Transform learning schemes have been shown to be effective for MR image reconstruction from limited

measurements [7, 12, 24, 27]. As a variety of TL-MRI algorithms have been proposed, each based on

different transform models and learning schemes, it is important to understand:

1) What are the relationships and differences among the TL-MRI schemes?

2) What MR image properties are used in each transform model?

3) Which methods are most effective for reconstruction of a particular MR image?

To this end, we present a tutorial that is intended to unify all recent TL-MRI schemes, and summarizes

their problem formulations and algorithms using a general framework. We discuss and contrast the features

of several TL-MRI schemes, namely STL-MRI [24], UNITE-MRI [7], FRIST-MRI [27], and STROLLR-

MRI [12], and visualize their learned models. We also illustrate the benefits of TL-MRI using STROLLR-

MRI as compared to other classes of MRI reconstruction methods.
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A. CS-MRI Formulation

Given the k-space measurements y ∈ Cm of the (vectorized) MR image x ∈ Cp, the theory of

Compressed Sensing [4] enables accurate image recovery provided that x is sufficiently sparse in some

transform domain, and the sampling of y is incoherent with the sparsifying transform. In an ideal case

without measurement noise, a simple formulation of the CS reconstruction problem is the following:

(P0) x̂ = argmin
x

‖Ψx ‖0 s.t. F ux = y.

Here, F u ∈ Cm×p (with m � p) denotes the under-sampled Fourier encoding matrix [24], which is

the sensing or measurement operator in MRI. For P-MRI, the measurement operator also incorporates

sensitivity (SENSE) maps [1]. When sampling on a Cartesian grid with a single coil, F u , UF where

U ∈ Rm×p is a down-sampling matrix (of zeros and ones), and F ∈ Cp×p is the full Fourier encoding

matrix normalized such that FHF = Ip , where Ip ∈ Rp×p is the identity matrix. Fig. 1 displays three

k-space undersampling masks. Matrix Ψ ∈ Cp×p is a sparsifying transform and x is assumed sparse in

the Ψ-transform domain. The `0 “norm” is a sparsity measure that counts the number of nonzeros in a

vector. Alternative sparsity promoting functions include `p (0 < p < 1) penalties or the convex `1 norm

penalty. The goal in (P0) is to seek the Ψ-domain sparsest solution x̂ that satisfies the imaging forward

model F ux = y. In MRI, since y is usually noisy, the reconstruction problem is typically formulated

with a data-fidelity penalty as follows:

(P1) x̂ = argmin
x

‖Ψx ‖0 + υ ‖F ux− y‖22 .

Here, the `2 data fidelity term ‖F ux− y‖22 with υ > 0 is based on Gaussian measurement noise.

B. General TL-MRI Framework and Its Variations

In practice, there are multiple limitations in using (P0) or (P1) for MR image reconstruction:

• Instead of exact sparsity in the transform domain, MR images are typically only approximately

sparse.

• The transform Ψ is pre-defined and fixed. It is not optimized for the underlying image(s) x.

• Instead of imposing common sparsity properties for the entire image, it may be more effective to

assume local or nonlocal diversity or variability of the models.
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Fig. 3. A general pipeline of MR image reconstruction with sparsifying transform learning.

Recent TL-MRI works [7, 12, 24, 27] addressed these limitations by adapting an approximately spar-

sifying transform model to the MR image, and incorporating rich sparsifying models of image content.

These formulations can be written in the following unified form:

(P2) x̂ = argmin
x

‖F ux− y‖22 + RTL(x) ,

where the functional RTL(x) is a transform-learning based regularizer. The actual form of RTL(x)

depends on the underlying image properties and models, and is the major difference between the various

TL-MRI formulations. Another difference in the form of the regularizer arises from whether the transforms

were learned from a training set or learned directly during reconstruction. The latter approach, involving

optimization over both the image and the model parameters, is called blind compressed sensing (BCS).

One could also learn the transform from a training set and use it and the image reconstructed with it to

initialize BCS algorithms to adapt the model to the specific data. In short, one can plug in the desired TL

into (P2) through RTL(x), and Problem (P2) will reduce to the corresponding variation of the general

TL-MRI scheme. Fig. 3 is a general pipeline for a BCS TL-MRI scheme.

We review several recent TL-MRI schemes such as STL-MRI [24], UNITE-MRI [7], FRIST-MRI [27],

and STROLLR-MRI [12]. We discuss how they can be incorporated in the general framework (P2) by

using specific transform models and learned regularizers, and also discuss the properties they exploit. We

discuss the methods under the more common BCS setup. Several of the TL-MRI algorithms above also

have proven convergence guarantees to critical points of the underlying problems [7, 24, 27].
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1) STL-MRI [24]: The earliest formulation of TL-MRI applied square transform learning (STL) [24]

for MR image reconstruction, dubbed STL-MRI. The regularizer RTL(x) = RSTL(x) is defined as

RSTL(x) , argmin
W ,{bi}

N∑
i=1

{‖WPix− bi‖22 + τ2 ‖bi‖0}+
λ

2
‖W ‖2F − λ log( detW ) . (1)

Here and in the remainder of this work, when certain indexed variables are enclosed within braces, it

represents the set of all variables over the range of the indices, e.g., {bi} in (1) represents {bi}Ni=1.

The operator Pi ∈ Rn×p extracts a
√
n ×
√
n square patch (block) from the image in vectorized form

as Pix ∈ Cn (see Fig. 3). We assume N patches in total, and the square transform W ∈ Cn×n is

assumed to sparsify Pix, with the transform sparse approximation denoted as bi. The last two terms in

(1) are the regularizers for the transform that enforce useful properties on the transform during learning.

Here, the − log( detW ) penalty prevents trivial solutions (e.g., W = 0 or with repeated rows), and

the ‖W ‖2F penalty prevents a scale ambiguity in the solution [11]. Together, the transform regularizer

terms λ
2 ‖W ‖

2
F − λ log( detW ) control the condition number (which is upper bounded by a monotone

function of the regularizer terms [11]) of the transform, with λ > 0. Such constraints were demonstrated

helpful in applications [11, 24, 36].

2) UT-MRI: Instead of learning generally-conditioned transforms, one can more efficiently constrain

the transform to be unitary (UT) [7, 12, 27]. This is akin to λ→∞ in (1) of the STL-MRI scheme. We

call this variation UT-MRI, which applies the regularizer RTL(x) = RUT (x) defined as

RUT (x) , argmin
W ,{bi}

N∑
i=1

{‖WPix− bi‖22 + τ2 ‖bi‖0} s.t. WHW = In. (2)

While conventional unitary analytical transforms such as the DCT or Haar Wavelets are not data-adaptive,

UT-MRI helps capture data-specific features that provide lower sparsities, thus improving performance

in reconstruction. Both STL-MRI and UT-MRI learn a single W to model all image patches and mainly

exploit local sparsity in the image. We provide an example in Fig 4, showing some image patches with

structures that are sparsified by these two schemes. Other TL methods ([27] surveys some) enforce

properties such as incoherence, double sparsity, etc., but have not yet been applied to MRI.

3) UNITE-MRI [7]: When MR images contain diverse features and edge information, it is more

effective to learn multiple transforms to model groups of “similar” patches. Thus, recent work proposed
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Fig. 4. Examples of the properties and grouping of local patches that are exploited by the variations of TL-MRI schemes.

UNIon of Transforms lEarning (UNITE) MRI [7]. The regularizer RTL(x) = RUNITE(x) is defined as

RUNITE(x) , argmin
{bi},{W k, Ck}

K∑
k=1

∑
i∈Ck

{‖W k Pi x− bi‖22 + τ2 ‖ bi ‖0}

s.t. WH
k W k = In , {Ck} ∈ G ∀k. (3)

Here, {Ck} denotes a clustering of the image patches into K disjoint sets, with each Ck containing the

indices i corresponding to the patches {W k Pi x}i∈Ck
in the k-th cluster. The superset G in (3) contains

all possible partitions of [1 : N ] into K disjoint subsets. Similar to (2), a unitary constraint is imposed

for each W k, which leads to an efficient reconstruction algorithm. When K = 1, (3) is equivalent to (2).

The goal of UNITE-MRI is to jointly learn a union of transforms, cluster the patches based on their

modeling errors with respect to each W k, and perform sparse coding and MR image reconstruction.

The patches ending up in the same cluster typically contain similar types of sparsifiable structures. An

example of such clustering is shown in Fig 4. In short, MR images with diverse structures are better

modeled by the richer UNITE-MRI.

4) FRIST-MRI [27]: MR images often contain features that are directional (e.g., edges) and similar up

to rotation and flipping. The recently proposed FRIST-MRI scheme [27] exploited such property of MR

images using the learned Flipping and Rotation Invariant Sparsifying Transform (FRIST). FRIST-MRI

learned a parent transform W such that each of its rotated and flipped children transforms W k = WΦk ∈

Cn×n can sparsify image patches with corresponding features. Here, {Φk} are the directional flipping

and rotation (FR) operators [27] that apply to each atom of W and approximate FR by permutation
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operations. The corresponding FRIST-MRI regularizer RTL(x) = RFRIST (x) is defined as

RFRIST (x) , argmin
W ,{bi},{Ck}

K∑
k=1

∑
i∈Ck

{‖WΦk Pi x− bi‖22 + τ2 ‖ bi ‖0}

s.t. WHW = In , {Ck} ∈ G ∀k, (4)

where the clusters correspond to patches that were grouped together with a specific rotation and flip

operator Φk. Problem (4) is a more structured formulation compared to (3) by setting W k = WΦk,

with only the parent transform W being learnable. However, a rich set of rotation and flip operators

can be incorporated to generate a flexible FRIST-MRI model. Similar to UNITE-MRI, each patch is

clustered into a particular W k, and associated with its FR operator Φk. The patches within the same

cluster typically have similar directional features [27], and thus they are easier to be modeled by sparse

representation. An example of how patches can be clustered is shown in Fig 4. Empirically, MR images

with directional structures are better modeled by FRIST-MRI [27].

5) STROLLR-MRI [12]: The aforementioned variations of TL-MRI schemes [7, 27] only model the

sparsity of MR image patches, which is a strictly local image property. However, MR images can also

have non-local structures, such as self-similarity between regions, which are complementary to the local

properties [12]. Recent work proposed jointly applying transform learning and low-rank approximations

over non-local patch blocks for MR image reconstruction, dubbed STROLLR-MRI [12]. The correspond-

ing STROLLR-MRI regularizer is a weighted sum of two components as follows:

RTL(x) = RSTROLLR(x) , γLRRLR(x) + γS RS(x) . (5)

In (5), RLR(x) imposes low-rankness on groups of similar patches using a matrix rank penalty as follows:

RLR(x) = min
{Di}

N∑
i=1

{
‖Vi x−Di‖2F + θ2 rank(Di)

}
, (6)

where Vi : x 7→ Vix ∈ Cn×M denotes a block matching (BM) operator that groups the M − 1

patches most similar to the reference patch Pix, within a limited search window centered at Pix, and

forms a matrix, whose columns are the reference patch and its matched partners (ordered by degree of
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Fig. 5. A general pipeline of various TL-MRI algorithms using under-sampled k-space measurements, under the unified
framework. The algorithms iterate through the transform update, sparse coding, and image update steps until convergence.

match).1 Each matrix Vix is then approximated by a low-rank matrix Di, by directly penalizing its

matrix rank [12], with parameter θ > 0. Besides low-rankness, the other part of the regularizer (5) is a

sparsity penalty of the following form:

RS(x) = min
{b̃i},W

N∑
i=1

{∥∥∥W Cix− b̃i

∥∥∥2
2

+ τ2
∥∥∥b̃∥∥∥

0

}
s.t. WHW = Inl . (7)

Here, the operator Ci : x 7→ Cix ∈ Cnl extracts the first l columns of Vix corresponding to Pix and

the l − 1 patches most similar to it, and vectorizes the sub-matrix (in column lexicographical order).

Therefore, (7) learns the transform over 3D patches for 2D MRI2, and thus captures non-local sparsity

properties in the MR image.

The goal of STROLLR-MRI is to represent the image by joint low-rank and sparse modeling over

groups of similar patches. Similar to UNITE-MRI, highly correlated patches are modeled, as illustrated in

Fig 4. But instead of joint clustering and sparse coding, BM is applied here to explicitly group non-local

but similar patches, which are reconstructed by complementary sparse and low-rank models.

C. TL-MRI Algorithm Pipeline

By plugging the learnable regularizers (1) - (5) into (P2), one can derive the MR image reconstruction

algorithms of STL-MRI, UT-MRI, UNITE-MRI, FRIST-MRI, and STROLLR-MRI, respectively, that

1When the block matching based STROLLR transform is learned from a database of images, the block matching happens
within each image, and thus block matching across images can be done in parallel.

2In general, Cix has an extra order of dimension over Pix.
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Fig. 6. Examples of the learned transform models in the STL, UNITE (with union of two transforms), FRIST, and Filter Bank
learning schemes. The atoms of each learned transform, or the impulse response of each channel in learned filter banks, are
displayed as 8× 8 patches.

iteratively optimize the corresponding problems. These algorithms work with general acquisitions and

sensing matrices, e.g., P-MRI or simple single-coil setups, and they are all block coordinate descent

(BCD) algorithms, and involve efficient, often closed-form solutions for subproblems [7, 12, 24, 27].

Though the actual forms of the regularizers (1) - (5) are varied, leading to different TL-MRI algorithms,

these algorithms all contain three major steps: (1) transform (W ) update (where transforms can often be

updated in closed-form using singular value decompositions of small matrices [7, 24]); (2) generalized

sparse coding; and (3) (least squares) image (x) update. Often the sparsity penalty parameter is decreased

over the algorithm iterations (a continuation strategy) for faster artifact removal initially and reduced bias

over iterations [7]. Fig. 5 summarizes the aforementioned TL-MRI algorithms using a general pipeline

that includes the major algorithm steps. Changes in the acquisition setup (e.g., P-MRI or simple single-

coil setups) only modify the image update step in Fig. 5. For example, the image update step is typically

solved using FFTs for single coil Cartesian MRI, or with iterative methods such as conjugate gradients

(CG) or proximal gradients for SENSE-based P-MRI. STROLLR-MRI involves an additional low-rank

approximation step, as it jointly imposes two complementary models on the image patches [12]. The

patch grouping in STROLLR-MRI is also different from UNITE-MRI or FRIST-MRI, where it is done

jointly with sparse coding. Instead, a block matching scheme is applied in STROLLR-MRI to explicitly

group correlated patches [7, 12, 27].

D. Some Empirical Comparisons and Transform Visualization
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Ground Truth Sparse MRI PANO DL-MRI STL-MRI STROLLR-MRI
Example A (39.07 dB) (41.61 dB) (41.73 dB) (41.95 dB) (43.27 dB)

Ground Truth Sparse MRI PANO DL-MRI ADMM-Net STROLLR-MRI
Example B (28.03 dB) (30.03 dB) (29.74 dB) (30.67 dB) (32.46 dB)

Fig. 7. Examples A and B of MRI reconstructions with simulated Cartesian 2.5x and pseudo-radial 5x undersampling,
respectively, using the Sparse MRI, PANO, DL-MRI, STL-MRI, ADMM-Net, and STROLLR-MRI schemes. The reconstruction
PSNRs (computed with respect to image magnitudes) are shown along with image zoom-ins. The ground truth images A and B
are from [28] and [8], respectively.

First, we visualize various TL models learned on an MRI brain image3 used in [24]. Fig. 6 shows

the learned transform models in the STL, union of transforms, FRIST, and Filter Bank learning schemes.

Compared to the STL model, the union of transforms model (corresponding to UNITE-MRI) in Fig. 6

captures a richer set of features in the MR image. The FRIST model has child transforms corresponding

to various flipped and rotated versions of the displayed parent atoms. The generated child transforms

provide a rich and flexible sparse representation model for MRI and can be particularly useful for images

with many rotational features. Later, Section IV-A also discusses the filterbank model shown in Fig. 6,

whose filters look quite different from the other models.

For a simple qualitative comparison of different classes of MRI methods, we obtain reconstructions

of example MR images A and B shown in Fig. 7 from simulated single-coil 2.5-fold undersampled

(using Cartesian sampling) and 5-fold undersampled (using pseudo-radial sampling) data, respectively.4

In example A, we reconstructed using the Sparse MRI, PANO, DL-MRI, STL-MRI, and STROLLR-

MRI techniques, which are representative of conventional CS MRI (wavelets + total variation), partially

3The magnitude image was used for learning to enable simple transform visualization, but in general all TL-MRI schemes
learn complex-valued transforms.

4In Fig. 7, the example A [28] is a complex-valued MRI reference SENSE reconstruction (the magnitude is displayed) of 32
channel fully-sampled Cartesian axial data from a standard spin-echo sequence; and the example B is a real-valued magnitude
MR image, which is one of the ADMM-Net testing images provided by [8]. For fair comparison to ADMM-Net, we used the
same single-coil sampling mask, trained model, and testing MR image provided by the public ADMM-Net package [8].
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adaptive MRI, dictionary learning, simple and advanced transform learning based methods, respectively.

In Example B, we replaced STL-MRI by ADMM-Net [8], which is a representative of the deep learning

methods for MRI.5 Fig. 7 shows the reconstructions with PSNR values in decibels (dB) and local image

zoom-ins. In these examples, the learned transforms can reconstruct higher-quality (higher PSNR) MR

images than either classical Sparse MRI, or the more sophisticated PANO and DL-MRI. Moreover, com-

pared to results with transform learning (i.e., STROLLR-MRI), deep learning approaches can reconstruct

images with finer details, but may also lead to more artifacts. Some similar results have been obtained

in more detailed quantitative comparisons [7, 12, 24, 27]. Further comparisons with more recent additions

to the rapidly evolving deep learning-based methods could be the subject of future research.

IV. CONNECTIONS TO NEURAL NETWORKS, NEW DIRECTIONS, AND OPEN PROBLEMS

This section discusses the connections between learned sparsifying transforms and filterbank models

and reviews recent filterbank training approaches and multi-layer extensions for inverse problems. Recent

progress in supervised learning of algorithms with focus on transform-based reconstruction algorithms

is also discussed along with other recent trends. Finally, we discuss some of the main challenges, open

problems, and future directions in the field.

A. Connection to Learning Filter Banks

The action of sparsifying transforms on image patches can be cast as a convolution. Computing the

inner product of a transform atom with all image patches of an image is equivalent to convolving the

image with a reshaped and flipped version of the atom. The result when picking a regularly spaced

subset of image patches can be viewed as downsampling the convolved result. With this interpretation,

the sparse coefficient maps corresponding to the simple square transform model (STL) in (1) are obtained

by applying a set of filters to the image and thresholding the results. This thresholding operation can

be viewed as a certain non-linearity; namely, the proximal map of the sparsity penalty. Applying WH

to the sparse codes of patches and spatially aggregating them in the image (used for denoising and in

the image update step of TL-MRI reconstruction algorithms) corresponds to applying matched filters

5We used the parameter settings in the official packages for Sparse MRI, PANO, STL-MRI, and STROLLR-MRI. The patch
size used in STL-MRI was 8× 8 for a fair comparison to STROLLR-MRI. The DL-MRI settings are as used in [28]. DL-MRI,
STL-MRI, and STROLLR-MRI follow the BCS settings.
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Fig. 8. The reconstruction model (with K layers) based on the image update step of UT-MRI [7, 35], with a general measurement
operator A (here, A = F u). Each layer involves a decorruption step that uses filtering and thresholding operations (corresponding
to transform model with L filters) followed by a system model block that performs a least squares-type image update enforcing
the imaging measurement model.

to the corresponding thresholded maps and summing the results [25, 35]. With this interpretation, the

combination of patch extraction and patch-based transform operations can be viewed as applying a single

transform that acts on the image as a whole. This brings a new interpretation of overcompleteness and

redundancy, as even a square (patch-based) transform becomes overcomplete when overlapping patches

are used [25]. Recent work explored this interpretation of the transform model and proposed regularization

schemes to learn a sparsifying filter bank that is well-conditioned and invertible at the image level, but

not necessarily the patch level [25].

B. Physics-driven Deep Training of Transform-based Reconstruction Algorithms

Recent work has considered supervised learning methods, wherein the underlying reconstruction model

(such as a deep convolutional neural network for denoising) is learned to minimize the error in recon-

structing a corpus of training images from undersampled measurements. [30, 31] These methods can

require large training datasets to optimize billions of algorithm parameters (e.g., filters). Separate works

[9, 35] have cast existing transform learning-based blind CS image reconstruction algorithms as physics-

driven deep convolutional networks learned on-the-fly from measurements. These networks often involve

far fewer training parameters.

For example, the solution of the unconstrained least squares image update step of the UT-MRI algorithm

[7] (which learns a unitary transform) derived from its normal equation can be represented as one layer

of the model shown in Fig. 8. In particular, the image update step involves a system block that solves the

normal equation by matrix inversion or iterative conjugate gradients (CG). This system block incorporates

the forward model (physics) of the imaging process. Its inputs correspond to the right hand side of the

normal equation, with νFH
u y denoting a fixed bias term and the other input is a decorrupted version

of the image after passing it through a convolutional network. First, the image is passed through a set
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of transform filters, followed by (hard or soft) thresholding, and then a set of matched synthesis filters,

whose outputs are summed to produce a decorrupted image. The K layer model in Fig. 8 corresponds

to repeating the image update step for K iterations in UT-MRI, with fresh filters in each iteration. Since

UT-MRI does not require training data, it can be interpreted as learning the filters of the network on-

the-fly from measurements. Recent works [9, 35] learned the filters in this multi-layer model (a block

coordinate descent or BCD-Net [33]) using a greedy scheme to minimize the error in reconstructing a

training set from CS measurements. This approach and similar approaches [8, 10] involving unrolling

of MRI inversion algorithms are better referred to as physics-driven deep training due to the systematic

incorporation of the measurement model in the convolutional architecture. Once learned, the reconstruction

architecture can be applied to test data using efficient convolution and thresholding operations and least

squares-type updates. While [9, 35] did not enforce the corresponding synthesis and transform filters to

be matched in each layer, recent work [33] explored learning matched filters, which may further improve

image quality.

C. New Directions: Multi-Layer Transform Learning and Online Learning

Several new directions in transform and dictionary learning for image reconstruction have been pro-

posed recently. For example, various works explored multi-layer extensions and interpretations of synthesis

dictionary [37] and sparsifying transform models [26].

An efficient algorithm for unsupervised (model-based) learning of a multi-layer Deep Residual Trans-

form (DeepResT) model (see Fig. 9) was proposed in [26]. While in conventional transform learning,

we minimize the residual between the filter (or feature) maps (transformed or filtered image or patches)

and their sparse (thresholded) versions (e.g., the first term in (1)), in the DeepResT model in Fig. 9, the

residual maps for different filters are stacked to form a residual volume and further jointly sparsified

in the next layer, with the goal of better minimizing the residuals over layers. To avoid dimensionality

explosion, each filtering in each layer in Fig. 9 happens only spatially along each residual map channel

followed by summing the results across the channels. Moreover, to achieve robustness to noise and data

corruptions, the residual volumes are downsampled (pooled) prior to further filtering. In [26], for the

denoising application, pooling was performed in the channel direction, where the residual maps with the

smallest energies (that contain mostly noise) were dropped in each layer. The filters and sparse maps in
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Fig. 9. A schematic of a multi-layer Transform Model [26] (encoder) showing the filtering, thresholding, residual (difference
between filter outputs and their sparse versions) generation, and downsampling (pooling) operations in each layer.

all layers of the DeepResT (encoder) model were jointly learned from image(s) in [26] to minimize the

sparse residual in the final layer (layer L in Fig. 9). Unlike conventional deep learning that uses task-based

costs, the DeepResT model is learned using a transform learning (or model-based) cost in an unsupervised

manner, and moreover the efficient learning algorithm in [26] generalized the STL method [11].

An image encoded using the learned DeepResT model (Fig. 9) was decoded by a linear process

involving backpropagating the coefficient and residual maps through the layers. A noisy image may be

denoised by learning a multi-layer transform model directly from it and applying the follow-up decoding.

This approach provided notable denoising quality improvements over single-layer learned transforms and

dictionaries. Another approach called stacking, where multi-layer models are learned again on denoised

images for improved denoising, and is equivalent to successively stacking multi-layer encoder-decoder

pairs, led to further improvements in denosing at high noise levels. Ongoing work is exploring the efficacy

of such multi-layer learned models for medical image reconstruction.

Another research direction that is garnering increasing interest is online (or time-sequential) learning

for image reconstruction. Recent works showed the promise of online transform and synthesis dictionary

learning for video denoising [13] and dynamic MRI reconstruction from limited k-t space data [38]. Such

methods could be potentially used in applications such as interventional imaging, or could also be used

for effective locally-adaptive offline processing of large-scale data. In [38], the objective function for

reconstruction changes over time and is defined as a weighted average (over time) of instantaneous cost

functions corresponding to individual frames or groups (mini-batches formed using sliding windows) of

consecutive frames. The instantaneous cost functions include both a data-fidelity cost and regularization

based on a learned model. An exponential forgetting factor (weighting) controls the past memory (or
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degree of dynamic adaptivity) in the objective. Only the most recent frame(s) are optimized at a given

time in the time-average cost, and the model (e.g., dictionary or transform) is adapted therein based

on both the past and new information in the most recent frame measurements. Each frame is typically

reconstructed in multiple windows and the estimates from those windows are (weighted) averaged to

generate the final frame estimates. The online algorithm updates the model and frames in a runtime and

memory efficient manner by using warm starts (initializations) for variables from estimates in previous

windows (times), and only storing past information in small matrices updated cumulatively over time.

By allowing the image model to change over time, online learning allows flexibility in modeling and

tracking dynamically changing data. The methods in [38] provided better image quality than conventional

joint or batch reconstruction at a fraction of the computational cost. For example, for online learning of

a unitary sparsifying model for dynamic MRI reconstruction, [38] reported runtimes of 2.1 seconds to

reconstruct each frame using an unoptimized Matlab implementation. Obtaining good trade-offs between

the complexity or richness of learned models, runtime (to attain potential real-time and high performance),

convergence, and dynamic adaptivity for online learning algorithms is an important direction for future

MRI research.

D. Open Problems and Future Directions in Learning-Based MRI

There are several challenges and open questions in the field of learning-driven imaging. First, while

several transform learning-driven reconstruction algorithms have been proposed, usually with guaranteed

convergence to critical points (or generalized stationary points) of the problems, theory for guaranteeing

recovery of the underlying image, and the properties of the filters, cost functions, and initializations to

enable guaranteed and stable image recovery require further investigation. Such theory would also aid

the development of better models, regularizers, and learning and reconstruction algorithms.

Second, while both unsupervised or model-based (including on-the-fly learning and online methods) and

supervised learning approaches for CS MRI reconstruction have been proposed, a rigorous understanding

of the relative merits of both approaches, their generalizability, and the regimes (e.g., in terms of signal-to-

noise ratio or degree of undersampling) where they are each effective is needed. For example, supervised

learning methods are highly adaptive to the distribution of the training data, and since anomalies are

much less likely to occur in a training corpus than normal features, the learned models are unlikely to
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accurately capture them. As a consequence, the reconstructions they produce could miss anomalies, which

are all-important in medical diagnostics. This is an instance of supervised methods often not generalizing

well to new instances, and is also related to the known problem of class imbalance in training data. On

the other hand, transform learning approaches optimizing model-based costs can capture quite general

properties of image sets and generalize well [39]. Moreover, transform models can also be effectively and

efficiently learned on-the-fly from single-instance measurements, whether or not this instance includes an

anomaly. Developing methods that combine benefits of both supervised and unsupervised or model-based

learning to effectively adapt to both representative training data and anomalous instances is an interesting

line of research.

Third, there has been growing interest in adaptive sampling techniques for CS MRI reconstruction,

where the undersampling strategy is learned from training data to provide high quality reconstructions for

specific reconstruction algorithms, including learning-based schemes [40]. Since the underlying problems

for learning the undersampling strategy are highly non-convex and combinatorial, only approximate

algorithms have been proposed thus far. Developing computationally efficient algorithms for learning the

undersampling with performance guarantees is a fertile area for new research.

Finally, given recent trends and breakthroughs in transform/dictionary learning and machine learning

generally, we expect the next generation of MR and hybrid imaging systems to go beyond compressed

sensing and incorporate learning throughout the imaging pipeline. In particular, smart imaging systems

would continually learn from data (e.g., big datasets at hospitals or in the cloud, or from real-time

patient data using online learning) to acquire limited measurements rapidly and efficiently perform

image reconstruction and analytics. The underlying algorithms could learn or update the models for

all components of the imaging process (acquisition, reconstruction, analytics) to optimize end-to-end

performance in clinical settings. The development of such systems will require sustained innovation in

various models and efficient algorithms, along with innovations in pulse sequence design and hardware

for incorporating learning throughout the system.

V. CONCLUSIONS

This paper briefly reviewed the timeline of compressed sensing for MRI and discussed in particular

some of the advances in dictionary and transform learning for MR image reconstruction. The sparsifying
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transform model enables efficient and effective sparse coding, learning, and reconstruction algorithms.

We discussed a general learning-based regularization framework for MRI reconstruction. In this setting,

we discussed a variety of adaptive transform regularizers based on clustering, rotation invariance, and

patch similarity. Learned sparsifying transforms are closely related to filterbanks and neural networks.

Recent works have focused on physics-driven deep learning of reconstruction algorithms, unsupervised

learning of multi-layer transform models, and online transform/dictionary learning. We discussed several

existing challenges in this domain and ongoing directions such as a more rigorous understanding of the

pros and cons of unsupervised and supervised learning approaches for reconstruction and the development

of smart imaging systems.
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