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Abstract

Chemical imaging provides information about the distribution of chemicals within a target. When combined
with structural information about the target, in situ chemical imaging opens the door applications ranging from
tissue classification to industrial process monitoring. The combination of infrared spectroscopy and optical mi-
croscopy is a powerful tool for chemical imaging of thin targets. Unfortunately, extending this technique to targets
with appreciable depth is prohibitively slow.

We combine confocal microscopy and infrared spectroscopy to provide chemical imaging in three spatial di-
mensions. Interferometric measurements are acquired at a small number of focal depths, and images are formed
by solving a regularized inverse scattering problem. A low-dimensional signal model is key to our approach: we
assume the target comprises a finite number of distinct chemical species. We establish conditions on the con-
stituent spectra and the number of measurements needed for unique recovery of the target. Simulations illustrate
imaging of cellular phantoms and sub-wavelength targets from noisy measurements.

1 Introduction

Chemically specific imaging provides quantitative information about the distribution of chemicals within a target.
This may be accomplished through the use of exogenous chemicals or molecular staining to improve contrast
when the target is imaged with visible light. For many applications, these application of these dyes cannot be
introduced in situ, and the agents are often damaging to the target.

Vibrational spectroscopy with mid-infrared light presents a solution [1]. Absorption of mid-infrared light de-
pends on chemical composition. The underlying chemistry of a target can be determined, non-invasively, by illu-
minating the object with mid-infrared light and recording an absorption spectrum.

In principle, mid-infrared spectroscopy can provide chemically specific, spatially resolved imaging in three
spatial dimensions using a confocal scanning strategy: the target would be scanned point-by-point in three spatial
dimensions, and an absorption spectrum would be measured at each point [2, 3]. For a target with two spatial
dimensions, this is feasible- a typical data set of 1024 spectral samples over a 1024×1024 pixel grid requires on the
order an of hour of acquisition time and generates roughly 25 GB of data. Scanning along a third spatial dimension
(depth) makes imaging even a single target impractical: the resulting dataset would require over 25 terabytes of
storage and roughly a month of acquisition time.

The key challenge in jointly measuring structural and chemical information is dimensionality: with no con-
straints, the target can vary in three spatial and one spectral dimension. Existing imaging modalities explicitly or
implicitly rely on simple signal models to reduce the dimensionality of the target and allow for practical imaging.

Optical Coherence Tomography (OCT) and Interferometric Synthetic Aperture Microscopy (ISAM) are scattering-
based imaging modalities that reconstruct the 3D spatial distribution of a target by ignoring spectral variation, al-
though limited spectral information can be recovered at the expense of spatial resolution by way of time-frequency
analysis [4–6].

Fourier Transform Infrared (FTIR) spectroscopy, a workhorse of academic and industrial labs worldwide, ne-
glects all spatial variation within the target—thus reducing the target to a single dimension. An extension, FTIR
microspectroscopy, provides spatially and spectrally resolved measurements but requires the target to be very thin
with only transverse heterogeneities. Unmodeled spatial variations in the target cause scattering and diffraction,
ultimately distorting the measured spectra [2, 3].

We propose an approach that bridges these two extremes and allows for practical, chemically specific imaging.
We call this spectroscopic tomography. Rather than finely scanning the focus through the axial dimension of the
target, we acquire data at a small number of en-face focal planes. The target is recovered by solving the linearized
scattering problem. A low-dimensional model is used to regularize the inverse problem: we model the target as
the linear combination of a finite number of distinct chemical species. This is called the N -species approximation.
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We develop a set of algebraic conditions for unique recovery and examine the conditioning of the inverse problem.
Reconstructions from synthetic phantom data illustrate the promise of the model.

Preliminary research in this direction considered this problem, and the N -species model, with sample variation
in one spatial dimension [7]. Their simulated results involve several unrealistic assumptions, leading to results
of unrealistically high quality. We extend this work in several directions: we (i) use a non-asymptotic forward
model; (ii) demonstrate material-resolved reconstruction of samples with two spatial dimensions (one transverse
and depth, easily extended to three spatial dimensions) from data that is not generated according to the first Born
approximation; and (iii) refine the conditions for recovery of a sample consisting of N -species from interferometric
scattering experiments.

The paper is organized as follows. In Section 2 we describe our instrument and the corresponding forward
model. Section 3 describes the N -species model in greater detail. We discuss the sampling and discretization pro-
cedure in Section 4. We investigate the inverse problem in Section 5, and demonstrate the method by performing
numerical reconstructions from simulated measurements in Section 6.

1.1 Notation

We write the set of integers {1,2, . . . , N } as [N ] and the imaginary unit as i. Finite-dimensional vectors are denoted
by lower-case bold letters, e.g. x ∈CN . Finite-dimensional matrices and tensors are written using upper-case bold
letters. We adopt Matlab-style indexing notation: given a matrix A ∈CN×M , its i -th row is A[i , : ], the j -th column is
A[ : , j ], and i , j -th element is A[i , j ]. We denote the vector vec(A) ∈CN M is formed by stacking the columns of A into
a single vector (i.e., row-major ordering). The range, null space, and rank of a matrix A are written range{A} ,null {A},
and rank{A}. Given x ∈ CN , the diagonal matrix diag{x} ∈ CN×N has the entries of x along its main diagonal. Sim-
ilarly, given a set of N ×M matrices A1, . . . ,AL , the matrix blkdiag(A1, . . . ,AL) ∈ CLN×LM is block-diagonal with the
collection of Ai along its block diagonal.

The transpose (resp. Hermitian transpose) of a matrix is written AT (resp. AH). The `p norm of x ∈ CN is

‖x‖p =
(∑N

j=1

∣∣x[ j ]
∣∣p

)1/p
. For vectors in R2 or R3 we use the shorthand |r | = ‖r‖2. The N ×N identity matrix is IN ,

and the vector [1,1, . . .1]T ∈RN is written 1N . The tensor (or Kronecker) product between matrices A and B is A⊗B.

2 Preliminaries

We model our sample through its complex refractive index, n(r,k0) = nb +δn(r,k0) where nb is the refractive index
of the background medium and δn is the perturbation due to the sample; for simplicity, we take nb = 1. Here,
r = (x, y, z) = (r‖, z), where r‖ are the transverse dimensions and z indicates the axial dimension. We assume that
δn is (spatially) supported in the bounded region Γ ⊂ R3. The free-space wavenumber k0 is related to temporal
frequency ω by k0 =ω/c, where c is the speed of light in free space. The real part of the complex refractive index is
the ratio between c and the phase velocity in the medium, while the imaginary part indicates attenuation due to
propagation through the target.

Under the first Born approximation, the obtained measurements are linear in the complex susceptibility η,
n2 −1; we will work with the susceptibility rather than the refractive index. Note that η is also supported on Γ.

In the context of spectroscopy, the “spectrum” of a sample usually refers either to its complex refractive index
or only the imaginary part of the refractive index. Consider a homogeneous medium with refractive index n(k0) =
nr (k0) + iκ(k0). The real part, nr (k0), has mean value greater than one and the imaginary part, κ(k0), is non-
negative. Relating η(k0) to n(k0), we have

η(k0) = n(k0)2 −1 = nr (k0)2 −κ(k0)2 −1+2inr (k0)κ(k0).

Unlike the refractive index, the mean value of the real part of η(k0) may be less than one and can be negative. The
imaginary part of η(k0) remains non-negative.

2.1 Interferometric Synthetic Aperture Microscopy

In this section, we review the forward model relating the target, η, to the observed data. For a complete derivation,
see [8–11].
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Figure 1: Geometry and notation for scattering problem. The illuminating aperture is located at (r(o)
‖ ,0). The field

emerges from the aperture and is focused to the plane z = zF . The incident beam interacts with the sample, η, and
the backscattered light (red) is collected through the aperture to produce the measurement S(r(o)

‖ ,k0, zF ).

Our proposed instrument is based on an asymmetric Fourier Transform Infrared (FTIR) microscope. We con-
sider a confocal point scanning system where the illuminating aperture serves as the detection aperture. The
illumination and detection geometry are illustrated in Fig. 1.

The aperture is located in the plane z = 0. With the aperture positioned at (r(o)
‖ ,0), the sample is illuminated by

a broadband Gaussian beam focused to a point r(o) = (r(o)
‖ , zF ) within the sample. The illuminating field interacts

with the sample, and a portion of the light is scattered backwards and is collected through the aperture. The
aperture is raster scanned (either optically or mechanically) along the transverse coordinates r(o)

‖ . At each point
the scattered field is measured interferometrically, from which we use standard techniques to recover the complex
(phase-resolved) measurements. In the remainder of this paper, we ignore the interferometric aspects of data
acquisition and work directly with the phase-resolved measurements.

Under the first Born approximation, the measured data S(r(o)
‖ ,k0, zF ) is a linear function of η; we have

S(r(o)
‖ ,k0, zF ) =

Ï
A(r(o)

‖ − r‖, z − zF ,k0)η(r‖, z,k0) dz d2r‖, (1)

or, after taking a Fourier transform along the scanning dimension r(o)
‖ ,

Ŝ(k‖,k0, zF ) = 1

2π

∫
S(r(o)

‖ ,k0, zF )e−ik‖·r(o)
‖ d2r‖ =

∫
Â(k‖, z − zF ,k0)η̂(k‖, z,k0)dz. (2)

We call the function Â the ISAM kernel. This function is itself defined by an integral; explicitly,

Â(k‖, z,k0),

∣∣ρ(k0)
∣∣2

k2
0NA2

∫
Ω(k‖,k0)

exp

{
− 1

(k0NA)2

(∣∣∣k′
‖
∣∣∣2 +

∣∣∣k‖−k′
‖
∣∣∣2

)
+ iz

(
kz (k′

‖,k0)+kz (k‖−k′
‖,k0)

)}
kz (k′

‖,k0)
d2k ′

‖, (3)

where kz (k‖,k0) ,
√

k2
0 −

∣∣k‖
∣∣2 and the set Ω(k‖,k0) ,

{
k′
‖ ∈R2 :

∣∣∣k‖−k′
‖
∣∣∣≤ k0,

∣∣∣k′
‖
∣∣∣≤ k0

}
⊂ R3 restricts the integral

to propagating modes. The scalar NA > 0 is the numerical aperture of the illumination lens and
∣∣ρ(k0)

∣∣2 is the
power spectrum of the illumination source. We assume that ρ(k0) is supported on the interval [k0,min,k0,max].

2.2 Image Reconstruction using ISAM

Next, we discuss recovering the object η from measurements of the form (2). First, note that ρ(k0) in (3) ensures
that Â(k‖, z,k0) vanishes for any k0 ∉ [k0,min,k0,max]. Further, Ω(k‖,k0) is empty for

∣∣k‖
∣∣ > 2k0 and so Â(k‖, z,k0)

vanishes for all
∣∣k‖

∣∣> 2k0,max. Thus the measurements are related to the bandlimited transverse Fourier transform
of the object.

Previous derivations of ISAM continue by invoking a pair of approximations to the integral (3). One approxi-
mation holds when k0 |z − zF | is small and the other holds when the same quantity is large. Both approximations
are of the form

Â(k‖, z − zF ,k0) ≈χ(
k‖,2k0

)∣∣ρ(k0)
∣∣2
ϑ

(
k‖,k0

)
υ(z − zF )e ikz (k‖,2k0)(z−zF ) (4)
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Figure 2: Observable Fourier components for a target with two spatial and one spectral dimensions. The intersec-
tion of V with a plane of constant k0 becomes an arc of constant radius when projected onto the (kx ,kz ) plane.

where

χ
(
k‖,k0

)
,

{
1,

∣∣k‖
∣∣≤ k0

0, otherwise,

the function ϑ
(
k‖,k0

)
captures the transverse bandpass nature of the imaging system due to the aperture, and υ(z)

is a depth-dependent weighting function. The precise form of these functions depends on if k0 |z − zF | is large or

small; in either case, ϑ
(
k‖,k0

)∝ e
− |k‖|2

(k0NA)2 and υ(z) falls off as z−1 [10].
Inserting (4) into the measurement model (2), we have

Ŝ(k‖,k0, zF ) ≈χ(
k‖,2k0

)∣∣ρ(k0)
∣∣2
ϑ

(
k‖,k0

)
e ikz (k‖,2k0)zF

∫
υ(z − zF )η̂(k‖, z,k0)e−ikz (k‖,2k0)z dz. (5)

Consider a single, fixed, focal plane; this is the usual setting for ISAM imaging. Define the weighted susceptibility

ξ̂zF (k‖, z,k0), υ(z − zF )η̂(k‖, z,k0).

The integral in (5) is the Fourier transform of ξ̂zF with respect to z evaluated at the frequency −kz
(
k‖,2k0

)
; thus

Ŝ(k‖,k0, zF ) ≈χ(
k‖,2k0

)∣∣ρ(k0)
∣∣2
ϑ

(
k‖,k0

)
e ikz (k‖,2k0)zF ˆ̂ξzF (k‖,−kz

(
k‖,2k0

)
,k0),

where the double hat indicates a 3D Fourier transform with respect to r = (x, y, z). This is a generalized projection-
slice theorem: the ISAM data are approximately the bandlimited Fourier transform (with respect to r) of the
weighted susceptibility evaluated on a three dimensional surface parameterized by k‖ and k0. By varying k‖ and

k0, we are able to observe a curved 3D “slice” of the four-dimensional function ˆ̂ξzF (k‖,kz ,k0) constrained to the
surface

V,
{

(kx ,ky ,kz ,k0) :
√

k2
x +k2

y +k2
z = 2k0, kz < 0, k2

x +k2
y ≤ 4(k0NA)2, k0,min ≤ k0 ≤ k0,max

}
.

The sampling surface for a target with two spatial dimensions, i.e. r = (x, z), is illustrated in Fig. 2; that we can only
observe kz < 0 is due to the backscattering geometry. As defined, V contains only the Fourier components above
the e−2 cutoff frequency of ϑ

(
k‖,k0

)
. This is arbitrary as ϑ

(
k‖,k0

)
decays smoothly.

We cannot recover an arbitrary object given ISAM data at a single focal plane. Even analytic continuation
is not possible in this setting, as such methods require data over a four-dimensional volume element, and we
are restricted to a three-dimensional surface [12]. If we were to scan along zF in addition to r(o)

‖ , we could fur-

ther simplify by taking a Fourier transform along zF . The measurements would be of the form ˆ̂S(k‖,kz ,k0) =
ˆ̂A(k‖,kz ,k0) ˆ̂η(k‖,kz ,k0), where the double hat indicates the 3D Fourier transform with respect to r. Now, η could

be recovered using a standard deconvolution procedure. Unfortunately, this is infeasible for reasons described in
Section 1.
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The situation is simplified if η is not a function of k0; such an object is said to be non-dispersive. This is one of
the key assumptions on which ISAM, OCT, diffraction tomography, and reflection tomography are built [13–15]. In
this case, the measurements are related to a 3D slice of the 3D target η(x, y, z). The observable Fourier components
are

B,
{

(kx ,ky ,kz ) :
√

k2
x +k2

y +k2
z = 2k0, kz < 0, k2

x +k2
y ≤ 4(k0NA)2, k0,min ≤ k0 ≤ k0,max

}
The region B is called the optical passband of the ISAM imaging system. Strictly speaking, we observe the Fourier
components of the weighted susceptibility on B, but this distinction is usually ignored. Only a non-dispersive
(weighted) object whose spatial Fourier transform is supported on B can be perfectly imaged by the ISAM system
with a single focal plane. Otherwise, ISAM is able to recover, at best, a spatial bandpass version of the original
target. In the visualization of Fig. 2, B is the “shadow” cast by V onto the plane k0 = 0.

We do not directly use the approximate kernel (4) in this paper. However, we use the insight provided by this
approximation as a guide; in particular, the Fourier transform interpretation and the optical passband B inform
our sampling procedure and help establish fundamental limits of the imaging system.

3 The N -species Model

3.1 The Model

The fundamental problem of spectroscopic tomography is the dimensionality of the sample: an arbitrary sample
can vary in four dimensions (three spatial and one spectral), but measurements of the form (2) are constrained to
a three-dimensional surface. Acquiring a fourth dimension of data—in our case, by scanning in three spatial and
one spectral dimension—is prohibitively expensive.

Existing imaging modalities use simplified signal models to reduce the dimensionality of the sample and allow
for practical imaging. We have seen that ISAM assumes is either non-dispersive or has (known) spatially invariant
dispersion characteristics. In this case, the susceptibility is of the form η(r,k0) = p(r)h(k0), where p(r) captures the
spatial density of the target and h(k0) characterizes the wavelength-dependent dispersion characteristics. If h(k0)
is known, only p(r) must be determined—thus reducing the problem to recovery of a three-dimensional object.
Diffraction tomography, reflection tomography, and optical coherence tomography also assume non-dispersive
targets. Conversely, Fourier Transform Infrared spectroscopy of a bulk medium assumes that the sample is spatially
homogeneous, so that η(r,k0) = h(k0). An extension, FTIR microscopy, models the sample as a thin absorbing
screen; thus η(r,k0) = η(r‖,k0), a three-dimensional object.

These examples severely restrict the class of samples that can be imaged. We propose a model that is more
expressive than these examples while still allowing practical imaging.

Definition 1 (The N -species model [7]). An object, described by a susceptibility η(r,k0), is said to satisfy the N -
species model if

η(r,k0) =
Ns∑

ns=1
pns (r)hns (k0). (6)

The function pns (r) captures the spatial variation of the ns -th species and is called the spatial density. If species ns

is not present at location r, then pns (r) = 0. The complex function hns models the wavelength-dependent proper-
ties of the ns -th species and is called the spectral profile.

The N -species model, introduced in [7], is a rank Ns approximation to a general susceptibility. A similar decom-
position has been applied to magnetic resonance spectroscopic imaging, where it is called the Partially Separable
(PS) function model [16–19]. A similar model is used for material decomposition in X-ray tomography [20, 21].

3.2 Spectroscopic Tomography with the N -Species Model

Inserting the N -species model (6) into the linearized forward model (2), we have

Ŝ(k‖,k0, zF ) =
Ns∑

ns=1
hns (k0)

∫ ∞

−∞
Â(k‖, z − zF ,k0)p̂ns (k‖, z)dz. (7)
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At a given focal plane, the measurements are the sum of Ns independent ISAM experiments, each on a non-
dispersive object p̂ns (k‖, z) and each weighted by the spectral profile hns (k0). In what follows, we study inverse
problem associated with spectroscopic optical tomography: we wish to recover an object that satisfies the N -
species model from measurements of the form (7).

We know that in the single species case, the inverse problem can be solved from data acquired at single focal
plane—this is the usual ISAM problem. On the other hand, an arbitrary sample can be recovered by finely scanning
in all three spatial dimensions (i.e., along r(o)

‖ and zF ) and acquiring a spectrum at each point, but this is infeasible
as described in Section 1.

The N -species model is a middle ground between a single species object and an arbitrary one. Our goal is to
show that the number of measurements required to solve the inverse problem also lies in a middle ground between
these two extremes: in particular, we hope that an object satisfying the N -species model can be recovered using
NF ≈ Ns focal planes.

We divide the inverse problem into three distinct cases.

(P1) Known Spectra. Assume the spectral profiles
{
hns

}Ns
ns=1 are fixed and known. Our task reduces to a linear

inverse problem—recovery of the
{

p̂ns

}Ns
ns=1 from measurements of the form (7).

(P2) Spectra from a Dictionary. Assume the target comprises at most Ns chemical species, but the spectral profiles
are drawn from a (known) dictionary of some Ms > Ns possible spectra. The inverse problem can be phrased
as either a linear inverse problem over the entire dictionary, or as a nonlinear problem where the solution is
constrained to lie in a union of subspaces.

(P3) Fully Blind. Both the
{
hns

}Ns
ns=1 and

{
p̂ns

}Ns
ns=1 are unknown and must be recovered from measurements of

the form (7). This is a bilinear inverse problem in hns and pns .

In this paper, we limit our attention to cases (P1) and (P2). Our analysis is based on a discretized form of (7)
wherein all quantities are replaced by finite-dimensional versions, resulting in a so-called “discrete-to-discrete”
inverse problem [22, 23]. Next, we describe our sampling and discretization procedure.

4 Sampling and Discretization of the Forward Model

4.1 Sampling

The instrument acquires samples of the spatial-domain measurement equation (1). We assume the object is (spa-
tially) supported in a region Γ⊂R3; here, we take Γ= [0,Lx ]×[0,Ly ]×[0,Lz ]. We write the number of samples as Ni

and the discretization or sampling interval as ∆i for i = x, y, z,k. We obtain measurements at the transverse aper-
ture locations r(o)

‖ = (nx∆x ,ny∆y ) for integers nx ,ny . The parameters are chosen to cover Γ, i.e. Ni∆i = Li holds for
i = x, y, z. For simplicity, we assume the sampling parameters are the same along the x and y directions: Nx = Ny ,
∆x = ∆y , and Lx = Ly = Nx∆x . The wavenumber is sampled uniformly over the interval [k0,min,k0,max] with sam-

pling interval ∆k ; the nk -th measurement wavenumber is k0,i , k0,min+nk∆k . We acquire data at NF focal planes,
written

{
zF,i : i = 1,2, . . . NF

}
. The same sampling parameters are used at each focal plane; in particular, the set of

sampled wavenumbers does not change.
We choose the sampling parameters as we would for a standard, single-species ISAM problem.The neces-

sary sampling intervals can be motivated using the approximate forward model (4). Under this model, it can
be shown that “point spread function”

∣∣A(r‖,k0, z)
∣∣ (approximately) decays like a Gaussian in

∣∣r‖∣∣. We take Lx and
Ly large enough to safely neglect the unmeasured data. Moreover, for fixed zF the measurements Ŝ(k‖,k0, zF )
are bandlimited to [−k0,max sinNA,k0,max sinNA]; we sample along the transverse dimension at intervals ∆x ,∆y <
π/(k0,max sinNA). Finally, the combination of uniform sampling in r(o)

‖ and k0 leads to a non-uniform sampling of
the Fourier transform of the object: samples are obtained at uniform locations along the k‖ axis but at nonuniform
locations along the kz axis. To avoid aliasing, we require that the maximum distance between samples on the kz

axis is less than π/Lz [24, 25].

6
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p̄p̂l
nsP̂ P̂ns p̄l

Figure 3: The various unfoldings of the discretized spatial densities with Ns = 2. Here, block color indicates the
value of q‖. Species 1 is marked with a star, while species 2 is indicated with a circle.

4.2 Discretization

Given samples of (1), we take the 2D Discrete Fourier Transform (DFT) with respect to the transverse coordinates
and write the result as the tensor Ŝ ∈CNx×Ny×Nk×NF . We continue to assume Nx = Ny with Nx an even integer. The
2D-DFT coordinate q‖ = (qx , qy ) is an integer vector with 0 ≤ qx , qy ≤ Nx −1. We obtain the continuous Fourier
coordinate kx from the DFT coordinate kx as

kx (qx ) =
{

2πqx /Lx qx < Nx /2

2π(qx −Nx )/Lx otherwise,
(8)

and the same holds for qy and ky . We define k‖(q‖) = (
kx (qx ),ky (qy )

)
.

The discretized N -species measurement model is

Ŝ[q‖,nk ,nF ] =
Ns∑

ns=1
hns [nk ]

Nz−1∑
nz=0

ÂnF [q‖,nk ,nz ]P̂ns [q‖,nz ], (9)

where hns ∈ CNk and P̂ns ∈ CNx×Ny×Nz are the discretized spectral profile and spatial density corresponding to the
ns -th species, respectively, and

ÂnF [q‖,nk ,nz ], Â
(
k‖(q‖),k0,min +nk∆k , Nz∆z − zF,nF

)
.

Additionally, we gather the Fourier transforms of the discrete spatial densities into P̂ ∈CNx×Ny×Nz×Ns and spectral
profiles into H ∈CNk×Ns , with

P̂[q‖,nz ,ns ] = P̂ns [q‖,nz ]

H[nk ,ns ] = hns [nk ].

4.3 Block-Matrix Form of N -Species Forward Model

With the spectral profiles fixed, the measurements Ŝ are a linear function of the spatial densities. Thus we can write
(9) as a matrix-vector product, where the vector depends only on the spatial densities. The resulting matrix has a
block-diagonal structure which is key to our analysis of the discretized inverse problem.

Exploring this structure requires slicing and reshaping the tensors Ŝ, ÂnF , and P̂ into many forms. We introduce
additional notation to represent these derived quantities; the various forms of P̂ are illustrated in Fig. 3. Recall
upper-case bold letters refer to matrices or tensors and lower-case bold letters refer to vectors. We use a bar to
denote objects that have been “stacked” or vectorized. Subscripts are used to slice a tensor with respect to the last
index: e.g. ŝnF represents all measurements from the nF -th focal plane, while hns and P̂ns are the spectral profile
and spatial density for the ns -th species. A superscript indicates a submatrix or vector formed for particular value
of q‖. We use the reindexing function

γ :Z2 →Z γ(q‖) = qx +Nx qy ,

7



l = γ
(q‖)

nz

k0

ÂnF

Â1
nF

Â2
nF

ÂnF [q‖,nz ,k0]

(a)

Dns

Dns

D̄ns ÂnF D̄ns ÂnF

Dns Â1
nF

Â1
nF

(b)

Figure 4: (a) Unfolding the tensor ÂnF [q‖,nz ,nk ] into a block-diagonal matrix. (b) Constructing the scaled ISAM
matrices at a single focal plane.

to identify the 2D-DFT index q‖ with the integer γ(q‖). Let l = γ(q‖) and define

ŝl
nF

, Ŝ[γ−1(l ), : ,nF ] ∈CNk

Âl
nF

, ÂnF [γ−1(l ), : , : ] ∈CNk×Nz

p̂l
ns
, P̂[γ−1(l ), : ,ns ] ∈CNz .

Further, define the diagonal matrix Dns , diag
(
hns

) ∈CNk×Nk . Now, for fixed l = γ(q‖) and nF , (9) is equivalent to

ŝl
nF

=
Ns∑

ns=1
Dns Âl

nF
p̂l

ns
. (10)

The collection of (10) for nF ∈ [NF ] can be written as a single linear system. Define the vectors

p̄l , vec
(
P̂[γ−1(l ), : , : ]

)= [(p̂l
1)T, . . . , (p̂l

Ns
)T]T ∈CNs Nz

s̄l , vec
(
Ŝ[γ−1(l ), : , : ]

)= [(ŝl
1)T, . . . , (ŝl

NF
)T]T ∈CNF Nk ,

which contain the spatial densities for each species and measurements for all focal planes, respectively, and the
block matrixΦl ∈CNF Nk×Ns Nz by

Φl ,


D1Âl

1 . . . DNs Âl
1

...
. . .

...
D1Âl

NF
. . . DNs Âl

NF

 . (11)

Each block-row ofΦl corresponds to the l = γ(q‖) transverse Fourier component of measurements taken at a single
focal plane, and the ns -th block-column corresponds to the ns -th species. With these definitions in place, we have

s̄l =Φl p̄l . (12)

Equation (12) is the discretized N -species forward model at a single transverse Fourier frequency q‖ = γ−1(l ).

We can form an analogous linear system that describes the forward model for all q‖. We stack the
{

p̄l
}Nx Ny−1

l=0

and
{

s̄l
}Nx Ny−1

l=0 into vectors p̄ and s̄; explicitly1

p̄, [(p̄0)T, . . . , (p̄Nx Ny−1)T]T ∈CNx Ny Nz Ns

s̄, [(s̄0)T, . . . , (s̄Nx Ny−1)T]T ∈CNx Ny Nk N f .

Now, we form the block-diagonal matrixΦ

Φ, blkdiag

({
Φ̂l

}Nx Ny−1

l=0

)
∈CNx Ny Nk NF ×Nx Ny Nz Ns .

1Note that p̄ is not vec(P), as vec(·) is defined with row-major ordering.
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D̄1Â1

D̄1Â2

D̄2Â1

Φ1

Φ2 D̄2Â2

Permute

Φ

Figure 5: Row and column permutations bring the N -species measurement Φ into a block-matrix form similar to
that ofΦl . Here, color indicates the value of k0 and q‖. Stars and circles denote species 1 and 2, respectively. Rows
with solid (resp. wave-patterned) blocks correspond to measurements at the first (resp. second) focal plane. The
blocksΦ1 andΦ2 are given by (11).

Finally, we write the vectorized form of the N -species forward model (9) as

s̄ =Φp̄.

We call Φ the N -species measurement matrix. The block-diagonal structure of Φ illustrates the decomposition of
range{Φ} into the direct sum of Nx Ny invariant subspaces,

range{Φ} = range
{
Φ1}⊕ . . .⊕ range

{
ΦNx Ny

}
, (13)

where each subspace corresponds to one of the Nx Ny transverse Fourier frequencies q‖.
It exhibits a block structure that is similar to Φl . In a bit of overloaded notation, let ÂnF be the block-diagonal

matrix ÂnF = blkdiag
({

Âl
nF

}Nx Ny−1
l=0

)
; see Fig. 4a. For a non-dispersive target, we can write the discretized analogue

of (2) as
vec

(
Ŝ[ : , : ,nF ]

)= ÂnF vec
(
P̂ns

)
.

We call ÂnF the ISAM matrix, as it models the action of ISAM on a discretized spatial density. We must also define
D̄ns = INx NY ⊗Dns , that has Nx Ny repeated copies of hns along its diagonal; see Fig. 4b. There exist permutation
matricesΠ1,Π2 such that

Π1ΦΠ2 =

 D̄1Â1 D̄2Â1 . . . D̄Ns Â1
...

...
. . .

...
D̄1ÂNF D̄2ÂNF . . . D̄Ns ÂNF

 .

This relationship is illustrated in Fig. 5.

4.4 Construction using Khatri-Rao product

We briefly discuss an alternate construction ofΦl that connects the N -species inverse problem to a broad range of
related problems. We discuss these connections in Section 5.2.3.

Definition 2. The row-wise Khatri-Rao product of matrices A ∈Cm×n1 and B ∈Cm×n2 is

A¯B =

 A[1, : ]⊗B[1, : ]
...

A[m, : ]⊗B[m, : ]

 ∈Cm×n1n2 ,

i.e. each row of A¯B is the Kronecker product of the corresponding rows of A and B.

9
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Figure 6: Left: Singular values of Âl
nF

. The coordinate kx is obtained from γ−1(l ) using (8). Right: singular values
for kx = 0 and kx = 1. The vertical line marks the rank estimate (14). The focal plane is located at zF = 140µm. The
remaining system parameters are listed in Table 1.

We use the Khatri-Rao product to construct Φl . The first block-row of Φl is H¯ Âl
1. To obtain all block-rows of

Φl , we first stack the
{

Âl
nF

}NF

nF =1
into the matrix Āl , [(Âl

1)T . . . (Âl
NF

)T]T ∈CNF Nk×Nz . Next, stack NF copies of H into

H̄, (1TNF
⊗H) = [HT, . . . ,HT]T ∈CNF Nk×Ns . Now,Φl = H̄¯Āl . The complete matrixΦ can be constructed using row

and column permutations.

5 The N -Species Inverse Problem

5.1 Preliminaries: The Single Species Case

Under the N -species model (9), the measurements at each focal plane are modeled as the sum of Ns independent
ISAM experiments; thus, the ISAM matrices ÂnF set fundamental limits on what can be imaged. Stated plainly, if a
spatial density lies in the null space of ÂnF , then it will generate no measurement and thus cannot be imaged using
the proposed method.

As ÂnF = blkdiag
({

Âl
nF

}Nx Ny−1
l=0

)
, we can consider each Âl

nF
independently for each l = γ(q‖). A careful study of

the spectral properties of these matrices is beyond the scope of this paper. Instead, we combine a numerical study
of these matrices with intuition obtained from the approximate ISAM kernel (4).

We computed the singular values of Âl
nF

in the case of one transverse dimension, x, using the computational
parameters listed in Table 1. The singular values are shown in Fig. 6, where kx is determined from qx = γ−1(l )
using (8). While we do not form Âl

nF
using the approximate kernel, the approximate kernel provides intuition for

the behavior seen here. The largest singular values die off quickly as kx increases, as expected due to the function
ϑ

(
k‖,k0

)
in (4). Moreover, for |kx | > 2k0,max, ISAM matrix is uniformly zero due to χ(k‖,2k0).

According to the approximate forward model (5), for kx = 0 we obtain the (bandlimited) Fourier transform
of the (compactly supported, i.e. space-limited) weighted susceptibility. The eigenvalue spectrum of space-and-
frequency limited Fourier operators has been studied, beginning with a series of papers by Slepian, Landau, and
Pollak [26–30]. In the discrete case, the eigenvalue and singular value spectrum of space-and-frequency limited
Discrete Fourier Transform (DFT) matrices have been studied; such matrices are submatrices formed by consecu-
tive rows and columns of a DFT matrix [31–33]. The singular values of a space-and-frequency limited DFT matrix
are divided into three distinct regions: (1) a region wherein the singular values are near one; (2) a transition re-
gion where the singular values decay exponentially; and (3) the remaining singular values are nearly zero. The
number of singular values in the first region is called the effective rank and is written re . A direct application of
Slepian-Pollak theory predicts [29, 33]

re =
2(k0,max −k0,min)

2π/Lz
= Lz

π
(k0,max −k0,min). (14)

For fixed k‖, the approximate ISAM operator can be viewed as a space-and-frequency limited Fourier operator
with additional weighting in the spatial domain by υ(z) and in the frequency domain by ϑ

(
k‖,k0

)
. For each k‖

10



the operator is space-limited to a region of length Lz ; this is due to assumption that η is compactly supported.
Moreover, the operator is frequency-limited to the optical passband B. In the discretized setting, only A0

nF
can be

viewed as a (diagonally scaled) DFT matrix, as for q‖ 6= 0 the resulting Fourier transform is not uniformly sampled.
We can use the theory of space-and-frequency limited DFT matrices to understand the behavior of the spec-

trum of Â0
nF

as shown in Fig. 6. The singular values are broken into three regions: in the first region, the singular
values decay exponentially, albeit at a rate slower than in the second region. The transition between the first and
second regions still occurs at re . In the case of the parameters used in Fig. 6, we have re = 60, and the change in
behavior at re is evident. The case of kx 6= 0 is more complicated as the resulting Fourier transform is not uniformly
sampled.

Recall that B is the set of observable Fourier components of the weighted susceptibility, ν(z − zF )p̂(k‖, z). A
common practice in ISAM imaging is to ignore the axial weighting function and treat B as the observable Fourier
components of the unweighted susceptibility (see, e.g. [9, 10]). This is a reasonable approximation of the imag-
ing system. To justify the approximation, note that ν(z) is strictly positive and slowly varying; thus the Fourier
transform of the weighted and unweighted susceptibilities are roughly supported on the same set.

Using the same line of reasoning, we assume that null
{

Âl
nF

}
is invariant to the choice of focal plane zF . This

is reasonable when the focal planes are close to one another. Note that this is an implicit assumption in previous
work on multi-focal ISAM [34].

5.2 Algebraic Conditions for a Unique Solution to (P1)

We now consider the discretized N -species inverse problem. Recall the discretized forward model is given by (9), or
succinctly as s̄ =Φb̄. We begin by considering the discretized form of (P1): we assume the spectral profiles hns are
fixed and known. In this case, the matrixΦ is completely determined, and recovery of p̄ is a linear inverse problem.
Without additional constraints on the spatial densities, the existence and uniqueness of a solution is determined
entirely byΦ. In this section, we establish algebraic conditions for existence and uniqueness of a solution in terms

of the ISAM matrices,
{

ÂnF

}NF
nF =1, and the chemical spectra,

{
hns

}Ns
ns=1. Earlier work on this problem claimed that

NF ≥ Ns and linear independence of the hns is necessary and sufficient for unique recovery of the spatial densities
p̂ns within the optical passband [7]. While necessary, we show these two conditions are not sufficient.

We use the invariant subspace decomposition ofΦ given by (13) to reduce the problem to the study of the “one-
dimensional” problem s̄l =Φl p̄l for l ∈ {

0, . . . , Nx Ny −1
}
, withΦl given by (11). In what follows, the index l is fixed.

We analyze the system independently for each transverse Fourier mode. The results can be applied block-by-block
to pass to the full matrixΦ.

For each focal plane, the ISAM matrix Âl
nF

is of size Nk ×Nz , where Nk is the number of wavenumber samples

and Nz is the (axial) length of the discretized spatial density. Per Section 5.1, we assume the null space of Âl
nF

is invariant to the choice of focal plane, thus for fixed l each matrix has the same rank. Let r , rank
{

Âl
nF

}
for

nF ∈ [NF ]. We write the shared nullspace of the ISAM matrices as Nl ⊆CNz ; we have

Nl , null
{

Âl
nF

}
for nF ∈ [NF ].

The optical passband is
(
Nl

)⊥
. Define the subspace

N̄l ,Nl ×Nl . . .×Nl = span
{

p̄l = [(p̂l
1)T, . . . , (p̂l

Ns
)T]T

∣∣∣ p̂l
ns

∈Nl ,ns ∈ [Ns ]
}
⊆CNs Nz

of block vectors where each block is in Nl . The subspace
(
N̄l

)⊥
consists of block vectors where each block lies in

the optical passband,
(
Nl

)⊥
. In an abuse of notation, we refer to both

(
Nl

)⊥
and

(
N̄l

)⊥
as “the optical passband”.

Using the N -species model, the measurements are a weighted sum of ISAM experiments; thus any objects that
lie in N̄l will also be in null

{
Φl

}
. If an object cannot be imaged using ISAM, it cannot be imaged usingΦl . We must

consider uniqueness modulo N̄l ; our goal is to establish conditions such that these are the only objects that cannot
be imaged usingΦl . In this case, the N -species model does not introduce additional ambiguity and each species is
correctly identified. We do no worse using the N -species model than if we were able to image the spatial densities
independently using the ISAM system.

Let us pause to consider the geometry of a simple case: two species and a single focal plane. Here, Φl =
[D1Âl

1,D2Âl
1] and s̄l = Φl p̄l = D1Âl

1p̂1 + D2Âl
1p̂2. Clearly, if p̂l

1 and p̂l
2 are each in Nl , then s̄l = 0. Suppose the
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hns are non-zero for each index; then Dns is full rank. Using the formula for the rank of a partitioned matrix,

rank
{
Φl

}
= rank

{
[D1Âl

1,D2Âl
1]

}
= rank

{
[D1Âl

1]
}
+ rank

{
[D2Âl

1]
}
−dim

(
range

{
D1Âl

1

}
∩ range

{
D2Âl

1

})
= 2r −dim

(
range

{
D1Âl

1

}
∩ range

{
D2Âl

1

})
.

The last term captures the interplay between the Dns and Âl
1. We want to find conditions under which this inter-

section is trivial. As we assume Dns is full rank, we can instead ask when range
{

Âl
1

}∩ range
{

D−1
1 D2Âl

1

}
is trivial.

Loosely speaking, when is multiplication by a diagonal matrix enough to perturb a subspace out of alignment with
itself?

Next, we define our notion of uniqueness modulo the ISAM nullspace.

Definition 3. The solution to s̄l =Φl p̄l is said to be unique within the optical passband ifΦl x =Φl y =⇒ x−y ∈ N̄l .

Equivalently, there is a unique p̄l ∈ (
N̄l

)⊥
such that s̄l =Φl p̄l .

This definition sets up an equivalence relation on the spatial densities: we treat two spatial densities as equiv-
alent if their difference lies in N̄l , the null space of the ISAM matrices. This is the component to which we are
inherently are blind even in the single species case.

Next, we cast the problem into a form where we implicitly work in the optical passband
(
N̄l

)⊥
. Let Vl ∈ CNz×r

be a basis for
(
Nl

)⊥
. We introduce a new set of matrices: the restricted ISAM matrix B̂l

nF
, Âl

nF
Vl ∈ CNk×r is the

restriction of Âl
nF

to the subspace
(
Nl

)⊥
. Clearly, B̂l

nF
has full column rank. Similarly, INF ⊗Vl is a basis for

(
N̄l

)⊥
.

We define the restricted N -species matrix

Φ̃l ,Φl (INF ⊗Vl ) ∈CNF Nk×Ns r .

The question of unique recovery (within the optical passband) is determined entirely by this matrix, as stated in
the following result.

Lemma 1. LetΦl ∈CNF Nk×Ns Nz and rank
{

Âl
nF

}= r for nF ∈ [NF ]. The following statements are equivalent:

(C1) There is a unique p̄l ∈ (
N̄l

)⊥
such that s̄l =Φl p̄l

(C2) null
{
Φl

}= N̄l

(C3) rank
{
Φ̃l

}= Ns r .

We defer the proof to Appendix A.
We can construct the restricted N -species matrix Φ̃l using the Khatri-Rao product. Let B̄l ∈ CNF Nk×r be the

matrix formed by stacking the restricted ISAM matrices B̂l
nF

into a single block column: B̄l , [(B̂l
1)T, . . . , (B̂l

NF
)T]T.

Recall H̄ = (1TNF
⊗H) = [HT, . . . ,HT] ∈CNF Nk×Ns . Now,

Φ̃l =Φl (INF ⊗Vl ) =


D1Âl

1Vl . . . DNs Âl
1Vl

...
. . .

...
D1Âl

NF
Vl . . . DNs Âl

NF
Vl

=


D1B̂l

1 . . . DNs B̂l
1

...
. . .

...
D1B̂l

NF
. . . DNs B̂l

NF

= H̄¯ B̄l , (15)

mirroring the construction ofΦl in Section 4.4.
In what follows, we establish necessary and sufficient conditions for uniqueness within the optical passband.

5.2.1 Necessary Conditions for Uniqueness

Theorem 1. The solution to s̄l =Φl p̄l is unique within the optical passband only if

(N1) Nk NF ≥ Ns r

(N2) The spectral profiles are linearly independent (rank{H} = Ns )

(N3) No row of B̄l is orthogonal to all remaining rows
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Figure 7: Comparing (N5) and Theorem 2 for NF = 2 and r = 4. (a) The matrix B̄l . Color denotes the value of k0.
Rows with solid (resp. wave-patterned) blocks correspond to measurements at the first (resp. second) focal plane.
(b) Condition (N5) requires that the sum of the ranks of each 2×4 block of the same color must be at least 4Ns . (c)
A possible partitioning of the rows of B̄l as described in Theorem 2. If both C1 and C2, as defined in (16), have full
rank for generic chemical species the solution to s̄l =Φl p̄l is unique within the optical passband with probability
one.

(N4) For every subset J ⊂ [Nk ] with Ns ≤ |J | < Ns r /NF and rank
{

HJ
}= Ns , we have rank

{
HJ c

}
≥ Ns − NF

r |J |

(N5)
∑Nk

i=1 rank

{[
B̂l

1[i , : ]T, . . . , B̂l
NF

[i , : ]T
]T}

≥ Ns r .

We defer the proof to Appendix A. Let us pause to interpret these conditions.
In the single-species case, (N1) reduces to Nk ≥ r ; i.e. we must measure enough wavenumbers such that the

single-species ISAM problem is well-posed. Interestingly, (N1) does not require that NF ≥ Ns : recovery of Ns

species is possible from a single focal plane, provided the measurements are oversampled in wavenumber. This
behavior can be seen in the numerical experiments described in Section 5.3

Condition (N2) is unsurprising. If the spectral profiles are linearly dependent, the N -species representation of
a susceptibility is not unique and the spatial densities cannot be uniquely determined.

Condition (N3) is less transparent, but can be argued to hold by the underlying physics. If (N3) is violated,
there must be an object that scatters at only one of the measured wavenumbers and is non-scattering for the rest.
In the continuous setting, scattered fields are analytic functions of k0; thus if an object is non-scattering over an
interval of wavenumbers, it must be non-scattering for all k0 [12,35]. In the discretized setting we lose the analytic
properties of scattered waves. In our experience, however, condition (N3) holds.

Condition (N4) requires the spectral profiles to be sufficiently diverse: linear independence is not enough. As
an example, consider Ns = 2, NF = 1, and take h1 = [1,1, . . . ,1]T and h2 = [2,1, . . . ,1]T. These spectra are linearly
independent, but D1Âl

1 and D2Âl
1 differ by only one row; thus rank

{
Φ̃l

} ≤ r +1, failing (C3) of Lemma 1. Spectral
diversity is necessary to push range

{
D1Âl

1

}
out of alignment with range

{
D2Âl

1

}
. “Good” spectral profiles are not

too concentrated on any small set of indices.
The final condition, (N5), is a requirement on the diversity of measurements comprising the restricted ISAM

matrices. When Nk NF = Ns r , (N5) requires that the collection of measurement vectors corresponding to a given
wavenumber be linearly independent: each new focal plane must provide new and informative measurements.
This partitioning is illustrated in Fig. 7.

5.2.2 Sufficient Condition for Uniqueness

First, we note that no conditions on B̄l or H independently are sufficient to ensure there is a unique solution within
the optical passband. Consider again the two-species, one focal plane case: Φ̃l = [D1B̂l

1,D2B̂l
1], with Di = diag(hi ).

Suppose h1 is fixed and choose vectors w,v ∈ Cr such that no entry of B̂l
1v is zero. Set h2 = (D1B̂l

1w)/(B̂l
1v) where

the division is taken elementwise. With this construction, D2B̂l
1v = D1B̂l

1w, and thus rank
{
Φ̃l

}≤ 2r −1, failing (C3)
of Lemma 1.

These spectral profiles were carefully chosen to make Φ̃l lose rank. Fortunately, we are unlikely to encounter
such objects in practice. The following definition makes this argument precise.
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Definition 4. A property that depends on the spectral profiles H ∈ CNk×Ns is said to hold generically, or for generic
H, if the set for which it fails to hold has Lebesgue measure zero and is nowhere dense in CNk×Ns .

If a property that holds generically, it holds with probability one if the spectral profiles are drawn independently
from a distribution that is absolutely continuous with respect to the Lebesgue measure in CNk×Ns ; for instance,
when the entries of H are drawn i.i.d. from the Gaussian distribution. Moreover, the property exhibits a degree of
robustness: if it holds for a particular H′, then it holds in an open ball around H′ and will continue to hold given
sufficiently small perturbations to H′.

Theorem 2. Suppose Nk ≥ r and NF ≥ Ns . If there exists a collection {Ji ⊂ [Nk ]}NF
i=1 of disjoint sets, each of cardinality

|Ji | = r /NF , such that

Ci ,


B̂l

1[Ji , : ]
...

B̂l
NF

[Ji , : ]

 ∈Cr×r (16)

is full rank for each i ∈ [NF ], then for generic H the solution to s̄l =Φl p̄l is unique within the optical passband.

An illustration of the matrices Ci is shown in Fig. 7(c). Note that the necessary condition (N5) coincides with
the sufficient condition of Theorem 2 in the case of Nk = NF = r = Ns , which is the limit of scanning confocal
spectroscopic acquisition discussed in Section 1.

Theorem 2 can be stated in terms of a more familiar, but more restrictive, property on B̄l .

Definition 5. The Kruskal (row) rank of a matrix X ∈ Cn×m , written krank{X}, is the largest k such that every set of
k rows of X are linearly independent. The matrix X is said to have full Kruskal rank if krank{X} = max{n,m}.

Corollary 1. If B̄l ∈CNk NF ×r has full Kruskal rank, then for generic H the solution to s̄l =Φl p̄l is unique within the
optical passband.

5.2.3 Related Problems

The Khatri-Rao structure of Φ provides a link between the N -species inverse problem and topics in tensor factor-
ization, communications, and sensor networks, among others [36–42]. For example, the rank and Kruskal rank
of the Khatri-Rao product has implications for the uniqueness of certain tensor factorizations. Properties of the
Khatri-Rao product are an active area of research. For generic matrices X and Y, it is known that krank{X¯Y} =
krank{X}krank{Y} . Bhaskara et al. provide bounds on the smallest singular value of the Khatri-Rao product of ran-
dom matrices [41]. Recent work has investigated the restricted isometry property of the Khatri-Rao product of
random matrices [37–39].

These results do not directly apply to our problem. We are interested in properties of Φ̃l = H̄¯ B̄l . As B̄l is
determined by the physics and imaging geometry, we cannot choose this matrix generically or randomly. Even
H̄ cannot be chosen generically, as H̄ = (1TNF

⊗H); only the matrix H can be chosen generically. Translating new
results on the Khatri-Rao product to our setting remains a topic for further investigation.

5.3 Stability And Conditioning of (P1)

The results of the previous section tell us that the solution to s̄l =Φl p̄l is almost always unique (within the optical
passband), but say little about the stability of the problem. We must always deal with “noisy” measurements– not
just instrumentation noise, but also “noise” due to modeling error, e.g. multiple scattering and spatial-spectral
coupling not captured by the N -species model.

In this section, we numerically investigate the behavior of the singular values of the N -species matrix Φ for
the case three-species case (Ns = 3) in two spatial dimensions. We use the computational parameters listed in
Table 1, except for NA and NF , which vary. The singular values of the ISAM matrix formed using these compu-
tational parameters were investigated in Section 5.1 and plotted in Fig. 6. The spectral profiles used—caffeine,
acetaminophen, and warfarin—are shown in Fig. 10.

We computed the singular values of each block-matrixΦl (11) and plot the results in Fig. 8. Recall as a function
of kx is determined from qx = γ−1(l ) using (8). As expected, higher transverse spatial frequencies are present as NA
increases. Only the first NF re singular values are appreciable. The low-frequency components achieve rank 3re for
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etaminophen, and warfarin. System parameters listed in Table 1.

NF = 3, and adding focal planes improves the conditioning of Φ. Note that even in the case of a single focal plane,
the 3re -th singular value ofΦ0 is non-zero; as previously discussed, NF ≥ Ns is not necessary for a unique solution.

We investigated the singular values of the block corresponding to kx = 0 for a variety of chemical species and
a varying number of focal planes. We used a library of 20 experimentally acquired chemical spectra2 provided
through the IARPA SILMARILS project. We randomly selected three species from the library, formedΦ0, and com-
puted the singular values of this matrix. We scaledΦ0 to have unit spectral norm. This procedure was repeated for
200 realizations. The resulting singular values are plotted in Fig. 9; the borders of the shaded region are the best
and worst realizations for each choice of NF .

We repeated the same procedure using random spectral profiles. The real part of the spectral profile was drawn
i.i.d. from the standard normal distribution and the imaginary part was chosen uniformly over [0,1]. The results
are plotted in Fig. 9. Clearly, these un-physical spectra lead to better conditioned Φ0, and there is little difference
in the best and worst realizations. Study of the system using random spectral profiles may lead to a useful upper
bound on system performance.

5.4 Algebraic Conditions for (P2)

We now focus on the case (P2), wherein the target comprises Ns chemical species drawn from a “dictionary” of
Ms > Ns possible spectra. This problem can be viewed as an instance of (P1), in which case Theorem 1 requires
that number of focal planes is chosen such that NF Nk ≥ Ms r . This is undesirable if Ms is much larger than Ns .
This approach ignores the constraint that only Ns chemicals are present in the sample; by incorporating this side
information, we relax our condition on NF . This structure is known as block sparsity.

2These include caffeine, acetaminophen, warfarin, monosodium glutamate (MSG), sucrose, naproxen, potassium chlorate, polyvinylidene
fluoride (PVDF), aspartame, lactose, melatonin, ethylenediaminetetraacetic acid (EDTA), creatine, diazepam, biotin, fructose, pectin, glycine,
beta carotene, hydroxypropyl cellulose.
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Definition 6. The block vector p̄l = [p̂T
1 , . . . , p̂T

2 , p̂T
Ms

]T is said to be block-K sparse if the set
{
i : ‖p̂i‖2 > 0

}
has cardi-

nality at most K .

Block sparsity is a natural fit for our problem; we define the ns -th block to be the ns -th spatial density p̂ns , cor-
responding to the ns -th species in the dictionary. Note that block sparsity does not require the blocks themselves

(i.e., the
{

p̂ns

}Ns
ns=1) to be sparse.

Conditions for unique recovery of block-sparse vectors have been studied [43–46]. Eldar and Mishali [45] de-
veloped a straightforward condition for unique recovery that suits our needs:

Lemma 2. [45, Proposition 1] There is a unique block-Ns sparse solution to s̄l =Φl p̄l if and only if Φl v 6= 0 for any
non-zero v that is block-2Ns sparse.

We can easily translate Lemma 2 into our setting.

Theorem 3. For generic H, within the optical passband there is a unique block-Ns sparse vector p̄l consistent with
measurements s̄l =Φl p̄l if Nk > r , NF ≥ 2Ns , and B̄l contains 2Ns disjoint sets of linearly independent rows, each of
cardinality r = rank

{
B̄l

}
.

Proof. Let v be a block-2Ns sparse vector. Let Γ= [γ1, . . . ,γ2Ns ]T ∈Z2Ns index the non-zero blocks of v. The vector
vΓ ∈ C2Ns Nz contains the non-zero elements of v. The matrix ΦΓ ∈ CNF Nk×2Ns Nz is the restriction of Φ to the 2Ns

columns indexed by Γ.
By assumption, B̄l satisfies the conditions of Theorem 2 and ΦΓ is generically full column rank. Thus, for

generic H, we haveΦv =ΦΓvΓ 6= 0. Applying Lemma 2 completes the proof.

5.5 Computational Recovery

In the single-species case, the approximate form of the ISAM operator (Section 2.2) provides a non-iterative recon-
struction based on Fourier resampling [47]. This does not carry over to the multi-species case.

We recover the collection of spatial densities p̄ by solving the penalized least squares problem

argmin
p̄

1

2
‖s̄−Φp̄‖2

2 +λr R(p̄). (17)
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The first term is known as the data fidelity term. It ensures the observed data s̄ and “re-imaged” solution Φp̄ are
consistent. More sophisticated data fidelity terms can be used to model the effects of shot noise, background
signal, and more [48], but these are beyond the scope of this work.

The functional R : CNx Ny Nz Ns → R regularizes the inverse problem and encodes any constraints or a priori
assumptions regarding the spatial densities. Tikhonov regularization corresponds to R(p̄) = ∑Ns

ns=1‖p̂ns‖2
2. Alter-

natively, solutions that are sparse in a transform domain are obtained by setting R(P̂) = ∑Ns
ns=1‖Cp̂ns‖1, where C

is a sparsifying transform, e.g. a wavelet transform. Finally, the mixed `1/`2 norm
∑Ns

ns=1‖p̂ns‖2 encourages solu-
tions that are block-sparse; that is, solutions with a minimal number of active species. The non-negative scalar λr

balances the influence of the data fidelity and regularization terms.
The method used to solve (17) depends on the chosen regularizer. In the case of Tikhonov regularization, (17)

reduces to the solution of the linear system

(ΦHΦ+λr I)p̄ =ΦHs̄, (18)

where I is the NF Nk Nx Ny × NF Nk Nx Ny identity matrix. The matrix ΦHΦ ∈ CNF Nk Nx Ny×NF Nk Nx Ny is too large to
store, much less invert, an iterative solution is required. The conjugate gradient (CG) algorithm works well in
practice. CG requires only matrix-vector products with Φ and ΦH. These matrices are not explicitly formed; only
the coefficients ÂnF [q‖,nk ,nz ] are precomputed and stored. Similarly, the Nx Ny Nk×Nx Ny Nk matrices D̄ns are not
formed; only the spectral profiles are stored, and products with D̄ns are computed by elementwise multiplication.
We compute the matrix-vector products withΦ in a block-wise fashion. The vector ȳ =Φp̄ consists of Nx Ny blocks
ȳl

nF
, where l = γ(q‖) ∈ {

0, . . . , Nx Ny −1
}
, nF ∈ [NF ], and

ŷl
nF

=
Ns∑

ns=1
Dns Âl

nF
p̂l

ns
.

Assuming the spatial densities are already in the transverse Fourier domain, computing products with the N -
species matrixΦ ∈CNF Nk Nx Ny×Ns Nz Nx Ny in this way requires O(Nx Ny Nz NF Nk Ns ) FLOPS, rather than O(N 2

x N 2
y Nz NF Nk Ns )

FLOPS required if we ignore the block structure inΦ. Similarly, w̄ =ΦHȳ consists of blocks ŵl
ns

with ns ∈ Ns , where
the block is computed as

ŵl
ns

=
NF∑

nF =1
(Âl

nF
)HDH

ns
ŷl

nF
.

Many sparsity-promoting regularizers are non-differentiable. In this case, proximal methods such as FISTA
[49] or the Alternating Direction Method of Multipliers (ADMM) [50–52] are attractive. This class of algorithms
decomposes the problem (17) into a sequence of simpler subproblems. The solution of a linear system similar to
(18) is often a key ingredient of such algorithms.

6 Simulations

We now describe two simulations used to validate the proposed approach. For simplicity, we consider only two
spatial dimensions: one transverse (x) and one axial (z).

Preliminary work on the N -species model suffers from three unrealistic assumptions [7]. The simulations used
unrealistic wavelength ranges, leading to nearly complete coverage of Fourier space. This removes the large null
space present in AnF and simplifies the reconstruction problem. Secondly, the phantoms used satisfied the N -
species model exactly; no spectral noise was considered. Finally, the synthetic data used in the simulations was
generated data using the asymptotic approximation to the ISAM operator, and thus under the first Born approxi-
mation. This neglects multiple scattering, absorption, and the discrepancy between the exact and approximate
ISAM models. As a consequence, the simulations present an overly optimistic view of the proposed imaging
modality.

We generate synthetic data using accurate physical models and system parameters. Our synthetic data in-
cludes multiple scattering and absorption effects—only the inversion is performed under the Born approxima-
tion. Further, our simulated targets do not precisely follow the N -species model; instead, there are position-
dependent spectral variations within each species. In particular, we simulate an object of the form η(r,k0) =
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Nx 192 Lx 423.6µm ∆x 2.2µm
Nz 384 Lz 282.4µm ∆z 0.7µm
Nk 384 k0,min 0.4 rad ·µm−1 k0,max 1.1 rad ·µm−1

re 60 λmin 5.9µm−1 λmax 15.4µm−1

NF 3 zF [70,140,211]µm NA 0.4

Table 1: Parameters for point target simulations.

∑Ns
ns=1 pns (r)hns (r,k0), where hns (r,k0) = hns (k0)+ ens (r,k0) and ens (r,k0) ∼ CN (0,ξns ) is a circular complex Gaus-

sian random variable [53].
The minimization problem (17) is solved on an NVidia Titan X GPU using a combination of Python and CUDA

[54, 55].

6.1 Point Targets

We formed a spectral library of five chemicals using refractive index data provided through the IARPA SILMARILS
project. The corresponding spectral profiles are plotted in Fig. 10. The target consisted of 50 point scatterers. Each
point scatterer is associated to one chemical species; only three species (out of the five possible) are present. We
do not know a priori which chemicals are present.

We generated measurements using the Foldy-Lax model, which includes multiple scattering effects [56]. Data
was generated at three focal planes in a 420×280 µm volume according to the parameters in Table 1. The source
power spectrum was flat over [k0,min,k0,max]. This combination of parameters—three active species, three focal
planes, and a library of five possible species—corresponds to the case of (P2).

To assess the deviation from the single scattering model, we generated two sets of measurements using the
same target. The first set of measurements, denoted s, uses the Foldy-Lax method and incorporates multiple scat-
tering. The second, sB , is generated using the Born approximation and thus includes only single scattering events.
The ratio ‖s−sB‖2/‖sB‖2 indicates that more than 20% of the energy in s comes from multiple scattering events.

We performed two sets of simulations: the first using Tikhonov regularization and the second using sparsity-
promoting regularization. In the latter case, motivated by the spatial-domain sparsity of the target, we set R(P) =∑5

ns=1‖pns‖1. In the Tikhonov case, we performed 300 iterations of conjugate gradient on the normal equations

with λr = 10−5. In the case of `1 regularization, we used 2000 iterations of the FISTA algorithm with λr = 10−3.
Both cases terminated in under one minute.

The magnitude of the reconstructed spatial densities are shown in Fig. 11. Recall that the surface of observable
Fourier components is restricted to kz < 0. As such, any linear reconstruction method (e.g., Tikhonov-regularized
least squares) will produce a complex-valued image; we display only the magnitude and squared magnitude of
the recovered signal. For visualization purposes we have projected the point-target phantom onto the optical
passband. In both cases, the reconstructed targets are correctly spatially localized and identified with the correct
species.

The Tikhonov regularized reconstruction consists of the point scatterers sitting on top of a “noisy” background.
The background is primarily due to multiple scattering effects and spectral variations which are not captured by
our forward model. This background term is distributed across all five possible species; however, the recovered
point scatterers are associated to the correct species. The background is eliminated when viewing the squared
modulus of the reconstruction.

The `1 regularized reconstruction suppresses the background term. There is nearly perfect agreement between
the true target and the reconstructed target, despite taking data at only three, rather than five, focal planes. The
sparsity of the target, coupled with the `1 regularization, successfully eliminates artifacts due to multiple scatter-
ing.

For visualization purposes we map the three active species to the red, green, and blue channels of an RGB
image. The filtered phantom, Tikhonov, and filtered `1 reconstructions are shown in Fig. 12.
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caffeine, Green: acetaminophen, Blue: warfarin. The two species that are not present (MSG, Sucrose) were ignored.

Nx 256 Lx 150.0µm ∆x 0.6µm
Nz 256 Lz 150.0µm ∆z 0.6µm
Nk 256 k0,min 0.7 rad ·µm−1 k0,max 2.1 rad ·µm−1

re 67 λmin 3.0µm−1 λmax 9.0µm−1

NF 3 zF [54,75,96]µm NA 0.5

Table 2: Parameters for cell phantom simulation.

6.2 Cell Phantom

Next, we evaluated the ability to image extended targets. Our target is the cellular phantom shown in Fig. 13a,
which comprises three chemical species. Our spectral library contains five total species.

We generated synthetic measurements by solving the Lipmann-Schwinger equation (see, e.g., [56]) using the
using the Multi-Level Fast Multipole Algorithm (MLFMA) [57]. The data are not generated under the Born ap-
proximation, and thus includes multiple scattering and absorption phenomenon not captured using our forward
model. We use a version of the MLFMA specialized for simulating two spatial dimensions [58, 59].

We generated measurements for only three focal planes; the relevant computational parameters are listed in
Table 2. We generated synthetic spectral profiles using a sum-of-Lorentzians model [60]. Each spectral profile is of
the form

h(k0),σ0 +
99∑

n=1

σn

ν2
n −k2

0 − iγnk0
,

with σ∼ Unif[0,0.1], ν∼ Unif[1.2π,4.4π], and γ∼ Unif[2π×10−3,4π×10−2], where Unif[a,b] is the uniform distri-
bution over the interval [a,b]. The spectral profiles are plotted in Fig. 13b.

The first-order Born approximation is valid only if the total phase change between the incident field and the
field inside the sample is less than π—this implies that the object should be either weakly scattering or small
in spatial extent [61, 62]. The proposed phantom is neither. To investigate the effect on scattering strength on
the reconstructed images, we generated synthetic measurements for the scaled object δη(r(o),k0) where 0 < δ ≤
1. By reducing δ, we reduce the scattering strength and eventually fall into a regime where the first-order Born
approximation holds.

We used Tikhonov regularization with λr = 1×10−4 and 500 iterations of the conjugate-gradient algorithm.
The resulting reconstructions are shown in Fig. 14. The top row illustrates the projection of the phantom onto the
optical passband; this serves as the “gold standard” for our Tikhonov-regularized reconstructions. The remaining
rows are the reconstructed images. As expected, only the edges of the phantom that are nearly perpendicular to
the optical axis are visible. The reconstructed images deteriorate as δ increases, particularly at the rear edge of
each feature. However, the correct species is identified in each case; negligible energy is deposited into Species 4
and 5.
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Fig. 15 illustrates the influence of the regularization parameter λr . Noise dominates the reconstruction when
λr is too small. When λr is too large, there is no chemical identification- the recovered spatial densities are nearly
identical for each species.

7 Conclusions

We have considered the problem of chemically specific and spatially resolved tomographic imaging from interfer-
ometric measurements. We require the target to be the linear combination of a finite number of distinct chemical
species given data at a small number of en-face focal planes. We developed necessary and sufficient conditions for
unique recovery of a target satisfying this model. Linear independence of the chemical spectra is not sufficient—
additional spectral diversity is required.

In this paper, we assume the chemical spectra were either known or drawn from a library of possible spectra.
In the latter case, the number of required focal planes scales with the number of chemicals present in the sample,
not the total number in the library. Future work will consider extension fully blind problem.

Our approach requires interferometric (phase-resolved) measurements and solves the linearized scattering
problem. This extension to intensity-only measurements and the removal of the Born approximation are two
avenues for future work.

Phaseless, intensity-only diffraction tomography has been demonstrated by modifying the acquisition scheme
[63–65] and by optimization-based approaches [66]. Advances in high performance computing [58, 59, 67] and
deep learning [68–70] have facilitated the solution of large scale inverse scattering problems without linearization.
In some cases, solving the nonlinear inverse scattering problem overcomes the “missing cone” effect that hampers
our reconstruction of extended targets. However, thus far, these approaches have only considered non-dispersive
objects. Extension of these methods to spectroscopic tomography within the N -species approximation is an excit-
ing area of future work.
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A Proof of Main Theorems

Proof of Lemma 1. (C1) =⇒ (C2): Let p̄l ∈ (
N̄l

)⊥
be the unique solution to s̄l =Φl p̄l . Let x ∈ null

{
Φl

}∩(
N̄l

)⊥
. Now

Φl (p̄l +x) =Φl p̄l = s̄l . As x+ p̄l ∈ (
N̄l

)⊥
, by (C1) x = 0. Thus (C1) =⇒ (C2).

(C2) =⇒ (C3): Recall Φ̃l = Φl (INF ⊗Vl ) ∈ CNF Nk×Ns r . As INF ⊗Vl is a basis for
(
N̄l

)⊥
, and null

{
Φl

} = N̄l by
assumption, Φ̃l x = 0 if and only if x = 0; thus null

{
Φ̃l

}= {0}. By the rank nullity theorem, rank
{
Φ̃l

}= Ns r .

(C3) =⇒ (C1): Suppose ∃u,v ∈ (
N̄l

)⊥
such that Φl u = Φl v. As INF ⊗Vl is a basis for

(
N̄l

)⊥
, there are unique

vectors x,y such that u = (INF ⊗Vl )x and v = (INF ⊗Vl )y. Now 0 =Φl (u−v) = Φ̃l (x−y) =⇒ x = y as Φ̃l is full column
rank; thus u = v, completing the proof.

The following lemma regarding the rank of the Khatri-Rao product will prove useful:

Lemma 3. Given A ∈Cm×n1 and B ∈Cm×n2 , rank{A¯B} ≤ min(m, rank{A}rank{B}).

Proof. As A¯B ∈ Cm×n1n2 , we have rank{A¯B} ≤ min(m,n1n2). Note that A¯B contains a subset of rows of the
matrix A⊗B. As the rank of the Kronkecker product is equal to the product of the ranks of A and B (e.g., [71]), we
have rank{A¯B} ≤ rank{A⊗B} = rank{A}rank{B}.
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Figure 13: (a) Three-species cell phantom. The detector plane is plane located at z = 0. Solid vertical lines denote
the three focal planes. All units are µm. (b)Spectral profiles for cell phantom, plotted for δ= 1.
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Proof of Theorem 1. Here, we suppress the superscript l . By Lemma 1, it suffices to show that the proposed condi-
tions are necessary for Φ̃ to have rank Ns r . (N1) follows as Φ̃ can have rank Ns r only if Nk NF ≥ Ns r .

We show (N2) by contradiction; suppose rank{H} = q < Ns . By construction rank
{

H̄
} = rank{H}. Thus by

Lemma 3, rank
{
Φ̃

}≤ rank
{

H̄
}

rank
{

Āl
}≤ r q < Ns r .

For (N3), suppose the first row of B̂ is orthogonal to the remaining Nk NF rows. Let x be a column vector formed
from first row of B̂ and let e1 , [1,0, . . . ,0] ∈CNk NF ; by construction, B̂x = e1. Set α=∑Ns

ns=2 hns [1]/h1[1]; then

Φ̃ [−αxT,xT, . . . ,xT]T = diag

{
Ns∑

ns=2
hns −αh1

}
e1 = 0,

and so rank{Φ} ≤ Ns r −1.
To show (N4), suppose there is a subset J with |J | ≥ Ns such that H[J , : ] ∈C|J |×Ns is rank Ns and the remaining

rows, H[J c , : ] ∈ CNk−|J |×Ns has rank q < Ns . Define Φ̃J ∈ CNF |J |×Ns r to be the rows of Φ̃ involving the rows of H
indexed by J ; that is,

Φ̃J =

 H[J , : ]¯ B̂1[J , : ]
...

H[J , : ]¯ B̂NF [J , : ]

 ,

and construct Φ̃J c ∈CNF (Nk−|J |)×Ns r using the rows indexed by J c . As both B̂[J , : ] ∈CNF |J |×r and B̂[J c , : ] ∈CNF (Nk−|J |)×r

have rank at most r , by Lemma 3, we have

rank
{
Φ̃

}≤ rank
{
Φ̃J }+ rank

{
Φ̃J c

}
≤ min(NF |J | , Ns r )+min

(
NF (Nk −|J |), qr

)
,β.

Our goal is establish conditions such that β ≥ Ns r . This is clearly true, regardless of q , when NF |J | ≥ Ns r . When
|J | < Ns r /NF , we have

β= NF |J |+min
(
NF (Nk −|J |), qr

)
.

Suppose NF (Nk −|J |) < qr ; then β= NF Nk ≥ Ns r where the inequality follows from condition (N1). Otherwise, if
NF (Nk −|J |) ≥ qr , then β= NF |J |+qr and q ≥ Ns −NF |J |/r implies β≥ Ns r .

To show (N5), for each i ∈ [Nk ] we define the index set Ji = {i , i +Nk , . . . , i + (NF −1)Nk }; now,

Φ̃Ji = (1TNF
⊗ H̄[Ji , : ])¯ B̄[Ji , : ] =

 h1[i ]B̂1[i , : ] h2[i ]B̂1[i , : ] . . . hNs [i ]B̂1[i , : ]
...

...
...

h1[i ]B̂NF [i , : ] h2[i ]B̂NF [i , : ] . . . hNs [i ]B̂NF [i , : ]

 ∈CNF ×Ns r .

Now, rank
{
Φ̃

}≤∑Nk
i=1 rank

{
Φ̃Ji

}≤∑Nk
i=1 rank

{
B̂[Ji , : ]

}
, where the final inequality follows from Lemma 3 and rank

{
(1TNF

⊗H[Ji , : ])
}
=

1. Setting this upper bound to Ns r gives the statement.

Proof of Theorem 2. We omit the superscript l . It suffices to prove the case where Φ̃ is square, Nk = r and NF = Ns .
Then rank

{
Φ̃

} ∈CNs r×Ns r = Ns r if and only if

θ(H), detΦ̃= det[H̄¯ B̄] 6= 0.

Now, θ(H) is a multivariate polynomial in the entries of H whose coefficents depend only on the entries of B̄. Thus
θ(H) is either identically zero or its zero set is an affine algebraic set and thus a nowhere dense set of measure zero.
It suffices to show θ(H) 6= 0 for a single choice of H (see, e.g., [72–74] and references therein).

We can permute the rows of Φ̃ such that the first Nk rows are indexed by J1, the next Nk rows by J2, and so on.
In particular, there is a permutation matrixΠ ∈CNk Ns×Nk Ns such that (c.f. (15))

ΠΦ̃=



D1[J1, J1]B̂1[J1, : ] . . . DNF [J1, J1]B̂1[J1, : ]
...

...
D1[J1, J1]B̂NF [J1, : ] . . . DNF [J1, J1]B̂NF [J1, : ]
D1[J2, J2]B̂1[J2, : ] . . . DNF [J2, J2]B̂1[J2, : ]

...
. . .

...
D1[JNF , JNF ]B̂NF [JNF , : ] . . . DNF [JNF , JNF ]B̂NF [JNF , : ]


=


ĎJ1

1 C1 . . . ĎJ1
NF

C1

ĎJ2
1 C2 . . . ĎJ2

NF
C2

...
. . .

...

Ď
JNF
1 CNF . . . Ď

JNF
NF

CNF

 ,
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where, in an abuse of notation, we write ĎJ
i = (1TNF

⊗Di [J , J ]).
Next, we specify our choice of H. By assumption, r = Nk = mNF for some integer m. For each i ∈ [Ns ], we

set hi [Ji ] = 1m and set remaining coordinates are set to zero. With this construction, Ď
J j

i = Im if i = j ; otherwise,

Ď
J j

i = 0m . Now

ΠΦ̃=


C1 0m . . . 0m

0m C2 . . . 0m
...

...
. . .

...
0m 0m . . . CNF

 ,

that is, Φ̃ is similar to a block diagonal matrix. As each block along the diagonal is full rank by assumption, Φ̃ is full
rank.
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