MIRST: MID-INFRARED SPECTROSCOPIC TOMOGRAPHY

Luke Pfister, Rohit Bhargava, P. Scott Carney, and Yoram Bresler University of Illinois at Urbana-Champaign

Chemically Specific, Spatially Resolved, Non-invasive Imaging

Goals	Applications
 What chemicals are present and where are they? Non-invasive >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	 Tissue classification Disease diagnosis Drug diffusion Manufacturing
Limitations of ex	tisting modalities

• Optical Coherence Tomography (OCT) / Interferometric Synthetic Aperture Microscopy (ISAM)

-Limited chemical specificity

-Tradeoff: spatial/spectral resolution, spectral accuracy

Fourier Transform Infrared Spectroscopy (FTIR)
 Bulk: No spatial resolution

-Microscopy: requires thinly sectioned object

• Fluorescence microscopy

Block Matrix Form

$$\begin{bmatrix} \mathbf{\tilde{s}}_{z_{F1}} \\ \mathbf{\tilde{s}}_{z_{F2}} \\ \vdots \\ \mathbf{\tilde{s}}_{z_{FN_F}} \end{bmatrix} = \begin{bmatrix} \mathbf{D}_1 \mathbf{A}_{z_{F1}} & \mathbf{D}_2 \mathbf{A}_{z_{F1}} & \dots & \mathbf{D}_{N_s} \mathbf{A}_{z_{F1}} \\ \mathbf{D}_1 \mathbf{A}_{z_{F2}} & \mathbf{D}_2 \mathbf{A}_{z_{F2}} & \dots & \mathbf{D}_{N_s} \mathbf{A}_{z_{F2}} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{D}_1 \mathbf{A}_{z_{FN_F}} & \mathbf{D}_2 \mathbf{A}_{z_{FN_F}} & \dots & \mathbf{D}_{N_s} \mathbf{A}_{z_{FN_F}} \end{bmatrix} \begin{bmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \\ \vdots \\ \mathbf{p}_{N_s} \end{bmatrix}$$

Spatial densities \mathbf{p}_j recoverable (within optical passband) when spectra are known, linearly independent and $N_F \geq N_S$

Reconstruction: Dictionary of Species

• Suppose $s < N_s$ active species from a set of candidate species

Reconstruction: Known Species

Penalized Weighted Least Squares

$$\underset{\mathbf{P}}{\operatorname{arg\,min}} \sum_{z_F} \frac{1}{2} \| \tilde{\mathbf{s}}_{z_F} - \sum_{j=1}^{N_s} \mathbf{D}_j \mathbf{A}_{z_F} \mathbf{p}_j \|_2^2 + \lambda \underbrace{\phi(\mathbf{P})}_{\text{regularizer}}$$

Regularization is necessary to overcome null space of imaging system and to incorporate prior information on structure of **P** = [**p**₁, **p**₂, ... **p**_{N_s}]^T

−φ(**P**) = ∑^{N_s}_{j=1} ||**p**_j||²₂ (minimum-norm solution)
−φ(**P**) = ∑^{N_s}_{j=1} ||**Ψp**_j||₁ (sparsity in a basis)

Solve using your favorite algorithm

Tikhinov regularization: Conjugate Gradient

– Must label area of interest; phototoxicity

Overview of approach

- \bullet New imaging modality combining OCT & mid-infrared spectroscopy.
- -Contrast comes from scattering and absorption in mid-infrared "fingerprint" region
- Model object by its complex refractive index: $n(x, y, z, k_0)$
- -Real part: dispersion Imaginary part: absorption
- Low-dimensional, physically justified model for $n(x, y, z, k_0) \implies$ reduced data collection and efficient image reconstruction

Data Acquisition and Forward Model

Illuminate with broadband source or tunable laser focused to a plane z_F within the object
Asymmetric interferomeric microscope acquires magnitude & phase of backscattered field
Under the first Born approximation, we acquire linear measurements of complex susceptibility η = n² - 1:

 $S(x, k_0; z_F) = \int A(x - x', z_F - z', k_0) \eta(x', z', k_0) \, dx' dz'$ $\bigoplus (\text{Fourier transform along } x)$ $\tilde{S}(q_x, k_0; z_F) = \int \tilde{A}(q_x, z_F - z', k_0) \eta(q_x, z', k_0) \, dz'$

("materials dictionary"): $\{f_j(k_0)\}_{j=1}^{N_s}$ • $\phi(\mathbf{P}) = \sum_{j=1}^{N_s} ||\mathbf{p}_j||_2 \Longrightarrow$ reconstruction with few active species • Conjecture: recovery possible for $N_F = C \cdot s \leq N_s$

-Otherwise: Alternating Direction Method of Multipliers

Simulation: Point Scatterers

Setup

 \bullet Synthetic measurements from point scatterers (Foldy-Lax)

 \bullet Chemical spectra: FTIR measurements of bulk samples

• 3 focal planes distributed evenly in $512 \times 512 \mu m$ volume

• 256 wavelength samples between 6 to $11\mu m$; NA = 0.5

Spectra $f_j(k_0)$

Reconstructions

• We could obtain enough data to reconstruct η by scanning spatial dimensions (x, y, z)and wavelength k_0 , but requires lengthy acquisition, massive storage, and expensive reconstruction

Can we recovery η from a small number of foci?

Question

Hyperspectral Tomography

• Asymptotic approximation to forward model at one focal plane:

Observable locations of $\mathcal{F}\left\{W\cdot\eta\right\}\left(q_x,q_z,k_0\right)$

$$\begin{split} \tilde{S}(q_x, k_0; z_F) &= \int \tilde{A}(q_x, z_F - z', k_0) \eta(q_x, z', k_0) \ dz' \\ &\approx H(q_x, k_0) \cdot \mathcal{F}_{z \to q_z} \left\{ W(\cdot - z_F, k_0) \cdot \eta(q_x, \cdot, k_0) \right\} \Big|_{q_z = -2\sqrt{k_0^2 - \frac{q_x^2}{4}}} \end{split}$$

• $H(q_x, q_y, k_0)$: Bandpass filter: limiting aperture, diffraction limit • $W(z - z_F, k_0)$: Decay of illumination away from focus

Measurements are proportional to bandlimited Fourier transform of η · W along a trajectory controlled by q_x, q_y, and k₀.
-3D slice of a 4D object!

Note: to facilitate display of results, a small Gaussian blur was applied to ground truth and ℓ_1

• Tikhinov recon: ringing/multiple scattering artifacts present; some leakage between species, but correct species largely identified – Tradeoff: large $\lambda \rightarrow$ fewer artifacts, but more leakage between species (smoothing)

• ℓ_1 recon: Negligible leakage, fewer artifacts. Natural choice for point scatterers!

Simulation: Tape Setup • 40µm film sandwiched between 50µm layers of adhesive • Chemical spectra: FTIR of film+adhesive & film only. • Chemical spectra: FTIR of film+adhesive & film only. • 256 wavelength samples between 6 to 11µm; NA = 0.5 • 3 focal planes in 256 × 1024µm volume Reconstructions

Low-Rank Object Model

• Measurements are linear in p_j if the f_j are fixed:

Comparison	to	FTIR/	
------------	----	-------	--

Existing imaging modalities reconstruct η under severe restrictions on the structure of the sample. Our low-rank constraint is a compromise between these restrictions and arbitrary samples.

Method	Object	Degrees of Freedom
Scanning	$\eta(x,y,z,k_0)$	$N_x N_y N_z N_{k_0}$
OCT	$p(x,y,z)f(k_0)$	$N_{k_0} + N_x N_y N_z$
FTIR (Bulk)	$f(k_0)$	N_{k_0}
FTIR (Thin)	$p(x,y)f(k_0)$	$N_{k_0} + N_x N_y$
Proposed	$\left \sum_{j=1}^{N_s}p_j(x,y,z)f(k_0) ight $	$N_s(N_{k_0} + N_x N_y N_z) - N_s^2$

• Tikhinov regularization \implies linear inversion; can't recover low spatial frequencies. Only edges are visible.

• Total variation: natural choice for piecewise constant objects; reasonable success at support identification.

References

Fernandez, et al. "Infrared spectroscopic imaging for histopathologic recognition." Nature biotechnology, 2005.
 Im, et al. "Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells." Nature nanotech, 2014.
 Deutsch, et al. "Compositional prior information in computed infrared spectroscopic imaging." JOSA A, 2015.

Acknowledgments

This work supported in part by the Andrew T. Yang fellowship. Spectra collected by Suzanne Leslie and Matt Kole.