
LATEX TikZposter

MIRST: Mid-Infrared Spectroscopic Tomography

Luke Pfister, Rohit Bhargava, P. Scott Carney, and Yoram Bresler
University of Illinois at Urbana-Champaign

MIRST: Mid-Infrared Spectroscopic Tomography

Luke Pfister, Rohit Bhargava, P. Scott Carney, and Yoram Bresler
University of Illinois at Urbana-Champaign

Chemically Specific, Spatially Resolved, Non-invasive Imaging

Goals

•What chemicals are present and where are they?

•Non-invasive=⇒3D spatial imaging! Can’t assume thin object.

• Intrinsic contrast: no dyes, stains, or fluorescent labeling

•Require economical data collection and efficient image
reconstruction

Applications

•Tissue classification

•Disease diagnosis

•Drug diffusion

•Manufacturing
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Limitations of existing modalities

•Optical Coherence Tomography (OCT) /
Interferometric Synthetic Aperture Microscopy (ISAM)

– Limited chemical specificity

– Tradeoff: spatial/spectral resolution, spectral accuracy

•Fourier Transform Infrared Spectroscopy (FTIR)

– Bulk: No spatial resolution

– Microscopy: requires thinly sectioned object

•Fluorescence microscopy

– Must label area of interest; phototoxicity

Overview of approach

•New imaging modality combining OCT & mid-infrared spectroscopy.

– Contrast comes from scattering and absorption in mid-infrared “fingerprint” region

•Model object by its complex refractive index: n(x, y, z, k0)

– Real part: dispersion − Imaginary part: absorption

•Low-dimensional, physically justified model for n(x, y, z, k0) =⇒ reduced data collection and efficient image reconstruction

Data Acquisition and Forward Model

• Illuminate with broadband source or tunable laser focused to a plane zF within the object

•Asymmetric interferomeric microscope acquires magnitude & phase of backscattered field

•Under the first Born approximation, we acquire linear measurements of complex
susceptibility η = n2 − 1:

S(x, k0; zF ) =

∫
A(x− x′, zF − z′, k0)η(x′, z′, k0) dx

′dz′~ww� (Fourier transform along x)

S̃(qx, k0; zF ) =

∫
Ã(qx, zF − z′, k0)η(qx, z

′, k0) dz
′

•We could obtain enough data to reconstruct η by scanning spatial dimensions (x, y, z)
and wavelength k0, but requires lengthy acquisition, massive storage, and expensive re-
construction

Question

Can we recovery η from a small number of foci?

Hyperspectral Tomography

• Asymptotic approximation to forward model at one focal plane:

S̃(qx, k0; zF ) =

∫
Ã(qx, zF − z′, k0)η(qx, z

′, k0) dz
′

≈ H(qx, k0) · Fz→qz {W (· − zF , k0) · η(qx, ·, k0)}
∣∣
qz=−2

√
k20−q2x
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•H(qx, qy, k0): Bandpass filter: limiting aperture, diffraction limit

•W (z − zF , k0): Decay of illumination away from focus

•Measurements are proportional to bandlimited Fourier transform
of η ·W along a trajectory controlled by qx, qy, and k0.

– 3D slice of a 4D object!

Observable locations of F {W · η} (qx, qz, k0)
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Low-Rank Object Model

•Assume object comprises Ns distinct chemical species

η(x, y, z, k0) =

Ns∑
j=1

pj(x, y, z)︸ ︷︷ ︸
spatial density

·
spectral signature︷ ︸︸ ︷
fj(k0)

•Measurements are linear in pj if the fj are fixed:

S̃(qx, zF , k0) =

Ns∑
j=1

fj(k0)

∫
Ã(qx, zF − z′, k0)pj(qx, z

′) dz′︸ ︷︷ ︸
ISAM~ww� Discretization (sampling qx, k0 for fixed zF )

s̃zF =

Ns∑
j=1

diag {fj}︸ ︷︷ ︸
,Dj

AzFpj

Comparison to FTIR/OCT

Existing imaging modalities reconstruct η under severe restric-
tions on the structure of the sample. Our low-rank constraint is
a compromise between these restrictions and arbitrary samples.

Method Object Degrees of Freedom

Scanning η(x, y, z, k0) NxNyNzNk0

OCT p(x, y, z)f (k0) Nk0 + NxNyNz

FTIR (Bulk) f (k0) Nk0

FTIR (Thin) p(x, y)f (k0) Nk0 + NxNy

Proposed
∑Ns

j=1 pj(x, y, z)f (k0) Ns(Nk0 + NxNyNz)−N 2
s

Block Matrix Form
s̃zF1
s̃zF2

...
s̃zFNF

 =


D1AzF1 D2AzF1 . . . DNs

AzF1

D1AzF2 D2AzF2 . . . DNs
AzF2

... ... . . . ...
D1AzFNF

D2AzFNF
. . . DNs

AzFNF




p1

p2
...

pNs


Spatial densities pj recoverable (within optical passband) when
spectra are known, linearly independent and NF ≥ NS

Reconstruction: Dictionary of

Species

• Suppose s < Ns active species from a set of candidate species
(“materials dictionary”): {fj(k0)}Ns

j=1

•φ(P) =
∑Ns

j=1‖pj‖2=⇒reconstruction with few active species

•Conjecture: recovery possible for NF = C · s ≤ Ns

Reconstruction: Known Species

Penalized Weighted Least Squares

arg min
P

∑
zF

1

2
‖s̃zF −

Ns∑
j=1

DjAzFpj‖2
2 + λ φ(P)︸︷︷︸

regularizer

•Regularization is necessary to overcome null space of
imaging system and to incorporate prior information on
structure of P = [p1,p2, . . .pNs

]T

–φ(P) =
∑Ns

j=1‖pj‖2
2 (minimum-norm solution)

–φ(P) =
∑Ns

j=1‖Ψpj‖1 (sparsity in a basis)

• Solve using your favorite algorithm

– Tikhinov regularization: Conjugate Gradient

– Otherwise: Alternating Direction Method of Multipliers

Simulation: Point Scatterers

Setup

• Synthetic measurements from point scatterers (Foldy-Lax)

•Chemical spectra: FTIR measurements of bulk samples

• 3 focal planes distributed evenly in 512× 512µm volume

• 256 wavelength samples between 6 to 11µm; NA = 0.5

Spectra fj(k0)
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Reconstructions

Ground Truth Tikhonov Reconstruction Reconstruction

Note: to facilitate display of results, a small Gaussian blur was applied to ground truth and `1

•Tikhinov recon: ringing/multiple scattering artifacts present; some leakage between species, but correct species largely identified

– Tradeoff: large λ→ fewer artifacts, but more leakage between species (smoothing)

• `1 recon: Negligible leakage, fewer artifacts. Natural choice for point scatterers!

Simulation: Tape

Setup

• 40µm film sandwiched between 50µm layers of adhesive

•Chemical spectra: FTIR of film+adhesive & film only.

• 256 wavelength samples between 6 to 11µm; NA = 0.5

• 3 focal planes in 256× 1024µm volume

Reconstructions

Real part of refractive index

Imaginary part of refractive index

Truth Tikhonov Total Variation
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•Tikhinov regularization =⇒ linear inversion; can’t recover low spatial frequencies. Only edges are visible.

•Total variation: natural choice for piecewise constant objects; reasonable success at support identification.
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