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Abstract: A dramatic reduction in data required for chemically specific 3-D imaging is
achieved through prior constraints on the known constituents of the sample. We solve the
inverse scattering problem to determine morphology and composition.
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1. Introduction
Vibrational spectroscopy using mid-infrared illumination provides a means to determine chemical species without the
need for staining or other sample preparation with exogenous chemicals. However, chemically specific 3-D imaging
achieved by 3-D point-scanning mid-infrared spectroscopy is slow and cumbersome. Mid-infrared spectroscopy is
made practical by assuming the sample is homogeneous and characterized by a single bulk spectrum (thus reducing the
imaging problem to a single dimension), or is a thin section exhibiting only transverse heterogeneities (thus reducing
the problem to two spatial and one spectral dimension). Moreover, spatial variations of density and composition within
the sample can cause diffraction and scattering that distort the measured spectra. In contrast, imaging methods such
as optical coherence tomography (OCT), are based on scattering and encode sample morphology in the spectrum of
scattered light to provide non-invasive and non-destructive rapid 3-D imaging. However, OCT yields limited chemical
specificity [1]. In this work, we present a new approach that lies in between these two extremes to encode some sample
morphology in the spectra while still providing chemically specific images.

In many applications, it is reasonable to assume that the sample consists of a finite number of distinct species of
materials. We refer to this as the ’n-species’ model. We extend previous work [2] that used a similar model in several
ways: we (i) use a non-asymptotic forward model; (ii) incorporate sparsity-driven regularization; (iii) demonstrate
material-resolved reconstruction of samples with two spatial dimensions (one transverse and depth, easily extended to
three spatial dimensions) from data that is not generated according to the first Born approximation; and (iv) refine the
conditions for recovery of a sample consisting of n-species from interferometric scattering experiments.
2. Forward Problem
We characterize our object through its linear susceptibility η(r||,z,k0), where r|| = (x,y) represents the transverse
dimensions, z is the axial dimension, and k0 is wavenumber. Under the n-species approximation we have η(r||,z,k0) =

∑
Ns
j=1 p j(r||,z)h j(k0). Here, p j represents the spatial density and h j is the spectral response of the j-th chemical species.
The sample is placed in an asymmetric Fourier-transform infrared (FTIR) spectroscopic microscope. Light from a

broadband source is focused into a Gaussian beam and focused to a variable distance zF within the sample. The back-
scattered light is detected and the complex field of the scattered field is extracted from the interferometric measure-
ments. The beam is scanned over the transverse positions in the sample.

Under the first Born approximation, the complex scattered field is linear in η , or bilinear in the functions p j and h j:

S(k||,k0;zF ) =
Ns

∑
j=1

∫
dz

∫ d2k′||
exp
{

i[kz(k||−k′||,k0)+ kz(k′||,k0)](z− zF )
}

kz(k′||,k0)
g̃(k||−k′||,k0)g̃(k′||,k0)


︸ ︷︷ ︸

, A(k||,k0,z− zF )

h j(k0)p j(k||,z) (1)

where k|| are the transverse Fourier coordinates, kz(k||,k0) =
√

k2
0−
∣∣k||∣∣2, and g̃(k||,k0) =

(
√

π · k0 ·NA)−1 exp(− 1
2 (
|k|||

k0·NA )
2) is the Fourier transform of the Gaussian beam profile in the waist plane. We

restrict the integral over k′|| to include only propagating waves, for which kz(k′||,k0) is purely real.
We obtain measurements at Nk different values of the wavenumber k0 at each of Nx transverse positions and NF



focal planes. The forward model (1) can be discretized and written in block matrix form as
s1
s2
...

sNF

=


D1A1 D2A1 . . . DNs A1
D1A2 D2A2 . . . DNs A2

...
...

. . .
...

D1ANF D2ANF . . . DNs ANF


︸ ︷︷ ︸

, Φ ∈ CNF NxNk×NxNzNs


p1
p2
...

pNs

 (2)

The matrix Ai ∈ CNxNk×NxNz is the discretized kernel of the integral (1) when the system is focused to the i-th plane
and si ∈ CNxNk is the corresponding measurement vector. The vectors p j ∈ CNxNz , h j ∈ CNk , are discretized versions
of the spatial densities and spectral responses, and the diagonal matrix D j = INx ⊗ diag

{
h j
}
∈ CNkNx×NkNx , with IN

denoting the N×N identity matrix, has repeated copies of h j along its diagonal.
3. Inverse Problem
Recovering h j and p j from measurements given by (2) is a bilinear inverse problem. Despite recent progress in
understanding bilinear inverse problems, they remain challenging both theoretically and computationally. However,
there are scenarios in which it is reasonable to assume either exact knowledge of the chemicals in the sample or that
the chemicals are drawn from a “dictionary” H ∈ CNk×Ns of possible species that has j-th column h j. Conditioned on
the knowledge of the h j, recovering the p j from data generated by (2) reduces to a linear inverse problem. We restrict
our attention to this setting.

Let the matrix P ∈ CNxNz×Ns have j-th column given by p j. We also define p̄ = vec(P) to be the vector formed
by stacking the p j. We wish to recover P from measurements s and knowledge of H. Unfortunately, this problem is
ill-posed. The diffraction limit ensures that objects with high transverse spatial frequencies lie in the null space of each
Ai, and thus in the null space of Φ. However, with sufficiently many focal planes we can recover any object within the
optical passband of the system:

Theorem 1. Let B be the space of signals supported within the optical passband of the system and let B̄= INs ⊗B.
Given measurements s, there is a unique vector p̃ ∈ B̄ such that s = Φp̃ whenever the h j are linearly independent,
NF ≥ Ns, and

∣∣h j
∣∣≥ 0 for each j, where the magnitude and inequality are taken elementwise.

The requirement NF ≥Ns remains burdensome when the chemicals are drawn from a dictionary with many candidate
species. If only a small number of chemicals from the dictionary are present in the sample, recovery is possible from
NF ≤ Ns focal planes if a stronger condition on the dictionary is met.

Theorem 2. Let H be a dictionary of Ns and let P have at most k < Ns nonzero columns. We can recover P from
measurements given by (2) if every set of 2k columns of H are linearly independent, and NF ≥ 2k, and

∣∣h j
∣∣ ≥ 0 for

each j, where the magnitude and inequality are taken elementwise.
We recover P by solving a penalized weighted least squares (PWLS) problem

min
P

1
2 ∑

zF

‖szF −
Ns

∑
j=1

D jAzF p j‖2
2 +λψ(P) (3)

where the regularization functional ψ : CNxNz×Ns → R is necessary to overcome the ill-posedness of reconstruction
and encourages solutions to obey a particular signal model. For example, if our object consists of point targets, we
can take ψ to be a sparsity-promoting functional such as the `1 norm, whereas total-variation (TV) regularization is
well-suited for the reconstruction of piecewise constant objects. If no additional information regarding the structure of
P is available, we default to Tikhonov regularization by taking ψ to be the squared Frobenius norm.

There are a vast number of ways to solve the PWLS problem (3). For Tikhonov regularization, we use the Conjugate-
Gradient (CG) algorithm, whereas if ψ is non-differentiable (as is often the case with sparsity-promoting regulariza-
tion), we use the Alternating Direction Method of Multipliers (ADMM) [3].
4. Simulations
We simulate reconstruction of samples in two spatial dimensions (one transverse and one depth) with significantly
different spatial structure. In the first, we generated scattered measurements from a set of point targets according to the
Foldy-Lax model. Data was collected from 3 focal planes distributed evenly in 512×512µm volume, with a 1µm pixel
size. We obtain 256 wavelength samples between 6 to 11µm and the simulated system used NA = 0.5. Three chemical
species are present in the volume: octane, isopropanol, and cyclohexanol. The spectra were found via experimental
FTIR measurements of bulk samples. The spectra, sample, and reconstructions for Tikhonov and `1 regularization
are shown in Figure 1. While Tikhonov reconstruction accurately recovered the location of the point targets, many
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Fig. 1. Reconstruction of point targets. To facilitate display of results, a Gaussian blur is applied to
the ground truth and `1 reconstruction. Blue dots: octane; Green : isopropanol; Red: cyclohexanol
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Fig. 2. Reconstruction of tape.

reconstructed locations are the superposition of all three species and artifacts due to multiple scattering remain. By
contrast, `1 regularization eliminates these artifacts and correctly identifies the species at each point.

The second sample models a piece of double sided tape. A 40µm layer of film is located between two 50µm layers
of adhesive. Data was generated from the same parameters as in the previous simulation. The spectra for the film and
adhesive were found via FTIR. Figure 2 illustrates the spectra, sample, and reconstructions using Tikhonov and total-
variation regularization. Tikhonov regularization results in a band-pass filtered version of the original sample, where
the maximum and minimum spatial frequencies are dictated by the minimum and maximum illuminating wavelengths,
respectively. TV regularization promotes piecewise constant images and is a natural regularizer for this sample. As
expected, TV is able to reconstruct the lower spatial frequencies of the sample.
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