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ABSTRACT

Recent years have numerous algorithms to learn a sparse synthesis or analysis model from data. Recently, a
generalized analysis model called the ’transform model’ has been proposed. Data following the transform model
is approximately sparsified when acted on by a linear operator called a sparsifying transform. While existing
transform learning algorithms can learn a transform for any vectorized data, they are most often used to learn
a model for overlapping image patches. However, these approaches do not exploit the redundant nature of this
data and scale poorly with the dimensionality of the data and size of patches.

We propose a new sparsifying transform learning framework where the transform acts on entire images rather
than on patches. We illustrate the connection between existing patch-based transform learning approaches and
the theory of block transforms, then develop a new transform learning framework where the transforms have the
structure of an undecimated filter bank with short filters. Unlike previous work on transform learning, the filter
length can be chosen independently of the number of filter bank channels.

We apply our framework to accelerating magnetic resonance imaging. We simultaneously learn a sparsifying
filter bank while reconstructing an image from undersampled Fourier measurements. Numerical experiments
show our new model yields higher quality images than previous patch based sparsifying transform approaches.
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1. INTRODUCTION

Problems in fields ranging from statistical inference to medical imaging can be posed as the recovery of high-
quality data from incomplete or corrupted linear measurements. Formally, the goal is to recover the unknown
signal x ∈ RN from linear measurements y ∈ RM , given by

y = Ax+ e, (1)

where e ∈ Rp represents measurement error and the matrix A ∈ RM×N models the data acquisition process.

Often, the data acquisition process leads to A that are either poorly conditioned or underdetermined, as is
the case when we have access to fewer measurements than the ambient signal dimension (M < N). In this
case, the inverse problem can be solved only by utilizing additional information about the signal of interest to
regularize the inverse problem. This can be accomplished by solving the variational problem

arg min
x

1

2
‖y −Ax‖22 + λψ(x), (2)

where the regularization functional ψ : RN × R penalizes solutions that do not satisfy the prescribed signal
model.

Regularization based on sparse representations has proven to be especially effective for a wide variety of
inverse problems. An n-dimensional signal is said to follows a sparse signal model if it can be represented using
far fewer than n nonzero entries. Traditionally, sparse representations have been carefully designed to provide
optimal properties on a particular mathematical class of signals, e.g., wavelets enjoy optimal coefficient decay
properties for piecewise constant signals. However, it is difficult to develop an analytic sparse representation



that is fine-tuned for a practical class of data, such as medical images or speech. These difficulties are further
exacerbated for high dimensional data such as social network data, 4D imaging, or gene expression data.

These considerations have led to a variety of algorithms to learn a sparse signal model directly from data.
These algorithms attempt to train a sparse model by minimizing a metric of sparsity over a set of representative
training data. For many years, attention was focused primarily on adaptive synthesis sparsity models, wherein
the data is synthesized as the linear combination of a few generating signals.

More recently, attention has shifted to learning signal models wherein the data becomes sparse after being
acted or analyzed on a by a linear operator. Many of these approaches follow the co-sparse analysis model, which
is understood to require exact sparsity of the analyzed signal.

However, other work has focused on a generalization of the analysis model using a particular notion of
compressibility.1–4 A signal x ∈ RN is said to obey the transform sparsity model if there is a matrix W ∈ RM×N
such that Wx = z+ η, where z is sparse and ‖η‖2 is small. The matrix W is called a sparsifying transform, and
the vector z is referred to as an transform sparse code. Unlike the usual analysis model, the transform sparsity
model allows for the sparse code z to lie outside of the range space of W .

The task of finding z for a particular W and x can be posed as either a constrained or penalized optimization
problem. The constrained problem is stated as1

min
x

1

2
‖Wx− z‖22 s. t.‖z‖0 ≤ s, (3)

where ‖z‖0 simply counts the number of nonzero entries in the vector z. The solution to (3) is given in closed
form by retaining the s-largest entries of Wx and setting the rest to zero. The penalized variation is written5

min
x

1

2
‖Wx− z‖22 + ν‖z‖0, (4)

and the solution can be found by taking zj = [Wx]j whenever |[Wx]j | ≥
√
ν and setting zj = 0 otherwise. This

operation is called hard thresholding and will be written as z = Tν (Wx). We note that the `0 norm can be
replaced with a variety of other functionals, such as the `1 norm or the Huber function, and retain the closed
form and efficient solutions to the penalized sparse coding problem.

Several methods have been developed to learn a sparsifying transform from data. These include methods to
learn square transforms (K = N),1 tall transforms (K > N),3 and structured transforms.4,6 These methods
seek to find a W such that Wx is close in the `2 sense to some sparse vector z. Of course, with no additional
constraints, this problem can easily be solved by taking W to be a matrix of all zeros! As a consequence, further
constraints must be imposed on the learning problem.

Existing transform learning algorithms prohibit trivial solutions by requiring W to be left-invertible. This has
the further benefit of providing easy approximation of x from its transform sparse codes through W †Tν (Wx).
This property, reminiscent of transform coding with orthonormal matrices, motivates the name “transform
sparsity”.

The effectiveness of transform learning for inverse problems has been demonstrated on a variety of inverse
problems, including image denoising, magnetic resonance imaging, and computed tomography. As is common
with adaptive synthesis or co-sparse analysis models for spatiotemporal data, sparsifying transforms are often
used to model small, possibly overlapping sub-blocks of data called patches. The resulting model is called a
patch-based signal model and stands in contrast to an image-based

While patch-based models can be used for many types of data, such as images, audio, video, or high dimen-
sional data, we restrict our attention to two-dimensional images, although the approach generalizes to any type
of data that can be modeled by overlapping patches.

Patch-based models enjoy several desirable features. For instance, a single image can be decomposed of a
large number of patches, providing enough training data to learn a model for that particular image. Further,
patch-based models can have fewer parameters than a model for an entire image, leading to computational
efficiency and lower risk of overfitting.



Using a patch-based model to regularize an inverse problem requires a method to link the individual patches
to the desired image. A simple approach is to simply average the overlapping regions of each patch together to
form a final estimate.7–9 However, this technique ignores any correlation between neighboring patches.

A different technique is to learn a patch-based model assuming independence of the patches, but use a least
squares approach to form the final image estimate.5,7, 10–13 Still, if we desire to reconstruct a complete image, it
is natural to expect better results by using an image-based signal model.

Existing work in this direction is based on the Field of Experts model.14,15 These approaches use a Markov
Random Field (MRF) with overlapping cliques of pixels to motivate image patches. A probablilistic model for
an image is generated by taking the product of separate patch-level priors and normalizing. Each patch level
prior is expressed as a potential function applied to the product of the vectorized image patch with a matrix, the
coefficients of which are determined using maximum likelihood estimation. Thus these approaches are similar in
structure, if not spirit, to patch-based cosparse or transform models.

In this work, we propose a framework to learn an image-based transform sparsity model. Unlike existing
probabilistic MRF approaches, we propose a deterministic framework based on the connection between patch-
based sparsifying transforms and multichannel filter banks.

In Section 2 we examine this connection and interpret existing transform learning algorithms using the
language of polyphase filter banks. In Section 3, we use this connection to motivate a new method to learn image-
based sparsifying transforms that are structured as non-subsampled filter banks. We refer to these as filter bank
sparsifying transforms. In Section 5, we apply our new transforms to magnetic resonance image reconstruction
from undersampled data. We demonstrate that our new filter bank sparsifying transforms outperform existing
patch-based transform learning approaches.

Similar to what we propose, Cai et. al16 developed an algorithm to learn an analysis operator that is
implemented using a filter bank structure. However, they restricted their attention to learning critically sampled
filter banks. We show in Section 2 that this is equivalent to learning a patch-based analysis operator.

2. PATCH-BASED SPARSIFYING TRANSFORMS AS FILTER BANKS

We focus on the case where our training data X ∈ RK2×(N/s)2 consists of vectorized K ×K patches extracted
from a single N ×N image x, although it is straightforward to generalize to other forms of spatiotemporal data
or multiple images. The integer s ≥ 1 represents the distance between the same pixel location in consecutive
patches, which we call the patch stride. We take the sparsifying transform to be a matrix of size Nc ×K2. In
this section, we show that the transformed patches, WX, can be viewed as an Nc channel filter bank applied
to the image x, and that the properties of the filter bank are controlled by W and s. We consider two cases:
nonoverlapping patches and maximally overlapping patches.

The extracted patches do not overlap whenever s = K. Multiplying non-overlapping blocks of an image by
a fixed transform matrix can be interpreted as a block transformation,17 and thus WX can implemented as a
uniformly downsampled FIR filter bank. Here, the filter for the i-th channel wi is related to the i-th row of
W as Wi,: = vec (wi). The number of rows of W determine the number of channels in this filter bank and the
downsampling factor is s. The shape of the filter corresponds to the shape of extracted patches. We will restrict
our attention to square, K ×K patches and thus square, K ×K filters.

While the relationship between block transforms and multirate filter banks is well established, it lends a fresh
perspective on patch-based analysis operators. Often, the product WX is thought of as applying W to a set of
completely independent data vectors {xj}, even when the patches are extracted from a single image. The filter
bank perspective encourages us to consider WX as a single linear operator, which we denote HW , applied to the
image x.

Recall that a filter bank HW is said to be orthonormal if HTWHW = I, and HW is said to be a perfect
reconstruction (PR) filter bank if HW is left invertible. Whenever s = K and the filters wi are square (K ×K),
the matrix W corresponds to the polyphase matrix of the filter bankHW , and thus the orthonormality and perfect
reconstruction properties are determined entirely by W . Indeed, when WTW = I, HW is an orthonormal filter
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Figure 1. Block diagram of a sparsifying transform as a filter bank with an elementwise nonlinearity. The channels of the
analysis filter bank HW are given by the rows of W . The matrix G represents the channel coefficients for a left inverse of
HW .

bank, and the downsampled filter bank HW is perfect reconstruction if and only if its polyphase matrix W is
left invertible.18

Recall that existing transform learning algorithms require W to be left invertible. The relationship between
left invertibility of W and HW show that existing transform learning algorithms are, in fact, learning perfect
reconstruction downsampled filter banks!

As an aside, note that if an additive `0 sparsity penalty is used, as in (4), Z is found from WX by means
the elementwise nonlinearity Tν (·). Using the filter bank interpretation, Z is found by applying a pointwise
nonlinearity to each channel of the filter bank as illustrated in Figure 1. Note that this is true for any penalty
that is separable (ψ(Z) =

∑
i ψ(Zi)), such as an `1 penalty.

In practice, we usually do not operate on nonoverlapping patches of the image, instead choosing 1 ≤ s < K.
We can still view WX as passing x through a filter bank with uniform downsampling by a factor of s, however
the matrix W no longer corresponds to the polyphase matrix of this filter bank. In this case, requiring W to be
left invertible is stronger condition than requiring HW to be perfect reconstruction.

This prompts two questions: do we benefit by placing the burden of invertibility on HW rather than W , and
if so, can we devise an efficient algorithm to learn such a filter bank?

We restrict our attention to maximally overlapping patches (s = 1), implying that HW is an undecimated fil-
ter bank as illustrated in Figure 1. Our first task is to draw a connection between the matrix of filter coefficients,
W , and the left invertibility of the filter bank HW . In general, it is difficult to determine when a multidimen-
sional undecimated filter bank satisfies the perfect reconstruction condition. We simplify matters by considering
filter banks that implement circular, rather than linear, convolution, corresponding to the common strategy of
extracting patches that are allowed to wrap around the image boundary. Using circular convolution provides
easy access to the eigenvalues of HTWHW and thus grants a simple way to characterize perfect reconstruction
filter banks.

We will make use of a matrix representation of the filter bank HW . Two dimensional circular convolution
can be implemented as a matrix-vector multiplication, where the matrix is block-circulant with circulant blocks.
In an abuse of notation, we will refer to these matrices as simply “circulant”.

Let Cwj be the circulant matrix such that Cwjx computes the circular convolution of the signals wj and x.

We stack these matrices to form CW = [CTw1
, CTw2

, . . . , CTWNC
]T , so that HWx = CWx. Let Φ ∈ CN2×N2

be the

orthonormal 2D discrete Fourier transform (DFT) matrix, constructed as the Kronecker product of a normalized
1D DFT matrix with itself. For K < N , we represent an N ×N 2D-DFT of a K ×K signal using the matrix
Φ̄ ∈ CN2×K2

. This is equivalent to padding the K ×K matrix with (N −K) rows and columns of zeros before
performing the DFT.

We denote a length k vector of all ones as 1k. Given a vector (resp. matrix) x, the operation |x|2 is
performed independently to each element of the vector (resp. matrix). Finally, given a vector x ∈ Rn, the matrix
ddiag (x) ∈ Rn×n is diagonal with i-th diagonal entry given by the i-th element of x.



With these definitions in place, we relate the perfect reconstruction property of HW to the matrix W though
the following two simple results. Our characterization of perfect reconstruction circulant filter banks is based on
a simple diagonalization of the matrix CTWCW .

Lemma 2.1. Given W ∈ RNc×K2

, the matrix HTWHW = CTWCW can be diagonalized as ΦH ddiag
(∣∣Φ̄WT

∣∣2 1Nc

)
Φ.

Proof. The circulant matrix Cwj can be diagonalized as ΦDjΦ
∗, where Dj = ddiag

(
Φ̄Wj,:

)
is a diagonal

matrix constructed from the vector Φ̄Wj,:. Then, we have CTWCW =
∑Nc

j=1 C
T
wj
Cwj = Φ(

∑Nc

j=1D
∗
jDj)Φ

∗ =

ΦDΦ∗, where D , ddiag
(∑Nc

j=1

∣∣Φ̄Wj,:

∣∣2) = ddiag
(∣∣Φ̄WT

∣∣2 1Nc

)
has the eigenvalues of CTWCW along its

diagonal.

Corollary 1. The undecimated circulant filter bank HW is PR if and only if each entry of
∣∣Φ̄WT

∣∣2 1Nc is
strictly positive.

Proof. This follows immediately from Lemma 2.1 and properties of symmetric positive semidefinite matrices.

Lemma 1 provides straightforward way to express the PR property of a HW in terms of its coefficient matrix
W . Importantly, this result shows that W need not be left invertible for HW to be a perfect reconstruction
filter bank. This represents a significant relaxation of the constraints in existing transform learning algorithms.
Because we no longer require W to be left invertible, we are no longer restricted to choosing square or tall W .
The number of channels can be chosen independently of the filter size, and allows for fat W for the first time.
This property is especially desirable for high dimensional data- even in three dimensional data, a square W
operating on modest 8× 8× 8 patches must have 512 rows!

It should be noted that the relationship between patch-based analysis operators and convolution has been
previously explored,14–16 primarily as a computational tool. However, these works did not relate perfect recon-
struction filter banks with left invertible analysis operators.

3. FILTER BANK TRANSFORM LEARNING

In this section, we formulate the problem of learning a filter bank sparsifying transform from data.

We have three equivalent ways to express the action of our filter bank on an image: HWx,CWx, and WX,
where X is formed by extracting patches from x with unit stride, including those that wrap around the image
boundary. The final representation, WX, is attractive as it provides a concise parameterization of the learning
problem. This will be our primary representation of the action of the filter bank.

3.1 Problem Formulation

Our goal is to learn a perfect reconstruction filter bank that sparsifies our data, with the ultimate goal of using
this filter bank as a regularizer for inverse problems. We want our filter bank to be well conditioned as to prevent
undue noise amplification and provide a stable representation of the data. Further, we do not want our filter
bank to contain filters that are identically zero or copies of other filters, as these do not provide additional insight
to our data.

Similar to previous work on transform learning, we encourage sparsifying filters by using the penalty F (W,Z, x) =
1
2‖WX−Z‖2F +ν‖Z‖0. These terms ensure that the filtered data, WX, is close to a sparse matrix Z. We promote
well conditioned filter banks, containing no uniformly zero filters, by adding the penalty

J1(W ) =
∥∥∥∣∣Φ̄WT

∣∣2 1Nc
− 1N2

∥∥∥2
2
− β

Nc∑
j=1

log
(
‖Wj,:‖22

)
. (5)

The first term encourages the eigenvalues of HTWHW to be close to unity. The second term is a log barrier to
ensure no filters are identically zero.



Finally, we wish to encourage diversity in our learned filters. This is accomplished by penalizing the coherence
between the filters through a form of a penalty used in an existing algorithm for analysis operator learning.10 In
particular, we use

J2(W ) =
∑

1≤i<j≤Nc

− log

(
1−

(
〈Wi,:,Wj,:〉
‖Wi,:‖2‖Wj,:‖2

)2
)
. (6)

Our complete learning problem is written as

min
W,Z

1

2
‖WX − Z‖2F + ν‖Z‖0 + αJ1(W ) + γJ2(W ). (7)

3.2 Optimization Strategy

We utilize an alternating minimization algorithm to minimize (7). In the first stage, we hold W fixed and
minimize (7) over Z. This is the so-called sparse coding step, and the solution Z(k+1) can be obtained directly
by hard thresholding as Z(k+1) = Tν

(
W (k)X

)
. In the second stage, we hold Z fixed and update W by solving

min
W

1

2
‖WX − Z‖2F + αJ1(W ) + γJ2(W ). (8)

This is referred to as the transform update step. Unlike the square and patch-based case, we do not have a closed
form solution to the transform update step, and must utilize an iterative approach. Fortunately, the objective
function (7) is differentiable with respect to W and there are many iterative algorithms to choose from. We have
found the limited-memory BFGS (L-BFGS) algorithm to work well in practice. The required gradients are given
by

∇W ‖WX − Z‖2F = 2WXXT − 2ZXT , (9)

∇W ‖
∣∣Φ̄WT

∣∣2 1Nc
− 1N2‖22 = 4W Φ̄∗ ddiag

(∣∣Φ̄WT
∣∣2 1Nc

− 1N2

)
Φ̄, (10)

∂

∂Wr,s

Nc∑
k=1

log
(
‖Wk,:‖22

)
=

2Wr,s

‖Wr,:‖22
, (11)

∂

∂Wr,s
J2(W ) = 2

∑
i 6=s

Wi,r‖Ws,:‖22([WWT ]s,i)−Wr,s([WWT ]s,i)
2

‖Wi,:‖22‖Ws,:‖42 − ‖Ws,:‖22[WWT ]s,i
. (12)

Note that as the W update step is a subproblem of a larger iterative algorithm, we do not require L-BFGS to
fully converge. We found that terminating after a fixed number of L-BFGS iterations worked well.

Our filter bank transform learning algorithm is summarized as Algorithm 1. A stopping criterion can be
developed by looking at the relative change in the iterates W (k), but we found that a fixed number of iterations
worked well in practice.

Care must be taken to initialize the algorithm with a W that contains no duplicated or uniformly zero rows as
to ensure that the log barrier terms are finite. We typically use a random initialization. We have found that the
algorithm occasionally gets stuck and yields transforms that are very poorly conditioned. In each of these cases,
the eigenvalue of HTWHW corresponding to zero frequency (DC) was nearly zero. A possible fix is to constrain
one filter to consist of all ones to ensure that low frequencies are passed. However, we found that initializing the
algorithm with one of the filters set to all ones to be sufficient in preventing this behavior. Although the filter
was allowed to vary during the training procedure, in each case it retained its low-pass behavior.

4. APPLICATION TO MAGNETIC RESONANCE IMAGING

In this section we demonstrate the use of filter bank sparsifying transforms as a regularizer for magnetic resonance
imaging (MRI).



Algorithm 1 Filter bank sparsifying transform learning

INPUT: Image x, Initial transform W (0)

1: X ← unit stride patches of x
2: Z(0) ← Tν

(
W 0X

)
3: k ← 0
4: repeat
5: Z(k+1) ← Tν

(
W (k)X

)
6: W (k+1) ← arg minW 0.5‖WX − Z(k+1)‖2F + αJ1(W ) + γJ2(W )
7: k ← k + 1
8: until Halting Condition

While MRI provides a means to noninvasively determine both anatomical structure and physiological function,
it is a relatively slow imaging modality. As such, a great deal of effort has been spent in reducing the amount of
data necessary for MR image reconstruction.

We model the relationship between the MR data y ∈ CM and the image x ∈ RN2

as

y = ΓΦx+ e, (13)

where e represents zero mean Gaussian noise with variance σ2. The matrix Φ ∈ CN2×N2

represents the 2D
orthonormal Fourier matrix. The row selection matrix Γ ∈ RM×N2

is formed by selecting M < N2 rows from
the N2 × N2 identity matrix IN2 . Thus y is formed by subsampling the Fourier transform of x. We aim to
reconstruct the image from the measurements while jointly learning a sparsifying filter bank for this data. To
that end, we solve

min
x,HW ,z

1

2
‖y − ΓΦx‖22 + λ

(
1

2
‖HWx− z‖22 + ν‖z‖0 + αJ1(HW ) + γJ2(HW )

)
, (14)

where the parameter λ > 0 controls the strength given to the sparsifying transform regularizer. The first term
of the objective function enforces data fidelity in Fourier space. The second term ensures that the reconstructed
image is well sparsified by the transform HW , and the remaining terms ensure we learn a “good” sparsifying
transform.

We solve (14) by using alternating minimization. We begin by fixing x and updating HW and z as described
in Section 3. Then, with these quantities fixed, we update x by minimizing (14) over x. This problem simplifies
to

min
x

1

2
‖y − ΓΦx‖22 +

λ

2
‖HWx− z‖2F (15)

which is a least squares problem in x. The solution is given in closed form by

x∗ =
(
λHTWHW + ΦHΓTΓΦ

)−1 (
λHTW z + Φ∗ΓT y

)
. (16)

Fortunately, when HW implements circular convolution, the necessary matrix inversion can be solved cheaply.
Observe that ΓTΓ is an n × n diagonal matrix with only ones or zeros along its diagonal. Further, we have
HTWHW = ΦHDΦ, where the diagonal matrix D is found by way of Lemma 2.1. Thus we can rewrite (17)
solution as

x∗ = ΦH
(
λD + ΓTΓ

)−1
Φ
(
λHTW z + ΦHΓT y

)
, (17)

which requires only a single FFT and inverse FFT pair and multiplication by a diagonal matrix. We can
identify ΦHΓT y as a zero-filled reconstruction from the undersampled Fourier measurements. Thus the solution
(17) can be thought of as a passing a weighted sum of HTW z and a zero-filled reconstruction through the filter
λHTWHW + ΦHΓTΓΦ.

As MR images are typically constrained to a finite region surrounded by empty space, we do not expect any
distortion due to the use of circular convolution. Indeed, patch-based methods for MRI often extract patches
that wrap around the image boundary.
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Figure 2. (a) Input magnitude image. (b) Zero filled reconstruction using 23% of Fourier measurements. (c) Random
sampling mask.

The proposed algorithm is summarized as Algorithm 2. This algorithm differs from earlier work on sparsi-
fying transforms for MRI7 in two key ways. First, the previous work utilized a patch-based transform learning
formulation. Second, rather than the additive `0 penalty we use here, the authors constrained the sparsity of
each transformed patch to lie beneath a given threshold. This threshold is varied on a patch-by-patch basis. To
facilitate this, the authors used a variable splitting approach to separate the transform sparse coding step from
the image reconstruction step. This consists of two steps. In the first step, each image patch is denoised inde-
pendently. In the second step, the denoised patches are averaged with the zero-filled reconstruction to provide
an updated image estimate. If the variable patch sparsity constraint is replaced by a single sparsity level or an
additive penalty, this two-step procedure can be replaced with the closed form update of Algorithm 2.

Algorithm 2 MR image reconstruction with filter bank transform

INPUT: Image x, Initial transform W (0)

1: repeat
2: Z(k+1),W (k+1) ← Output of Algorithm 1

3: D(k+1) ← ddiag
(∣∣Φ̄(W (k+1))T

∣∣2 1Nc

)
4: x(k+1) ← ΦH(ΓTΓ + λD(k+1))−1Φ((λH(k+1)

W )T z(k+1) + ΦHΓy)
5: k ← k + 1
6: until Halting Condition

5. EXPERIMENTS

We evaluated our algorithm using 512×512 fully sampled MRI image of a human brain (provided by Prof. Micheal
Lustig). We synthesized MR measurements satisfying (13) by taking a 2D DFT of the image and retaining only
23% of the Fourier coefficients. The reference image, sampling mask, and a zero-filled reconstruction are shown in
Figure 2. The reference image was normalized to have pixel values ranging from 0 to 1. We tested out algorithm
with no noise (undersampling only) and additive noise with σ = 10/255 and σ = 20/255.

We compare our filter bank sparsifying transform (FBST) algorithm against a square patch-based sparsifying
transform (PBST) algorithm. Unlike previous work on MR reconstruction using patch-based transforms we
utilize an additive `0 penalty, so the two approaches considered here differ only in the choice of regularization
for the transform update step. We make use of the closed-form solution for square transform learning.2

We evaluate the FBST approach using a variety of filter sizes and number of channels. The PBST uses 8× 8

patches, so we haveW ∈ R64×64. Our primary metric is PSNR (in dB), defined as PSNR = 20 log10(255/
∑N2

i=1(xi−
x∗i )) where x∗ represents the reference image. The best choice of parameters for Algorithm 2 remains an open



question. We set α = 0.2, β = 1× 10−4, and γ = 5× 10−5. The remaining parameters λ and ν were optimized
for each noise level and filter bank configuration. Both FBST and PBST were initialized with a discrete cosine
transform matrix.

Examples of learned filters are shown in Figure 3. The magnitude response of each channel are also shown,
with zero frequency located at the center of each image. While some of the filters resemble the DCT filters,
others filters exhibit a highly directional bandpass frequency response. Both filter banks are well conditioned
and have a condition number of around 1.5.

Table 1 lists the recovery PSNR for each noise level and filter bank configuration. In each case, the FBST
algorithm outperforms the PBST algorithm. For Nc = 64 and K = 8, the only difference in the two algorithms
is the type of underlying model- PBST is a patch-based model that neglects correlations in neighboring patches,
while FBST makes use of this redundant information. This result illustrates the advantage in chosing an image-
based signal model. We note that our FBST learning algorithm is signficantly slower than the square PBST
learning algorithm, owing to a lack of a closed-form solution to the transform update step.

Table 1 shows that there is not much benefit in choosing a 2× overcomplete filter bank or larger filters for
this experiment. We believe that the benefit in choosing overcomplete transforms, or larger filter sizes, will be
more pronounced when learning a transform that must sparsify a large number of images or when learning from
high-quality data.

Table 1. Image Reconstruction PSNR

σ / PSNR
FBST PBST

Nc = 64, K = 8 Nc = 128, K = 8 Nc = 64, K = 12 64× 64

0 / 29.6 35.15 35.22 35.13 34.63
10
255 / 28.8 32.62 32.72 32.60 32.53
20
255 / 26.9 31.68 31.61 31.21 31.30

6. CONCLUSION

We have developed a new framework for learning filter bank sparsifying transforms. Unlike previous work
on transform learning, these transforms operate at the image level, and allow for the filter length to be chosen
independently of the number of channels. We anticipate this flexibility will be beneficial for high dimensional data.
Numerical results illustrate that filter bank sparsifying transforms outperform square patch-based sparsifying
transforms for MR image reconstruction.
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