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Computed Tomography

@ Linear Measurements: y = Ax



Computed Tomography

@ Linear Measurements: y = Ax

@ Reconstruction: Filtered Back Projection (FBP)



Low Dose Computed Tomography




Model-Based Image Reconstruction

@ Three Ingredients

» System Model
» Noise Model
» Signal Model

@ Tie together into an optimization problem



Penalized Weighted Least-Squares

1
min 3 [y — Aeffy +AJ(a)



Penalized Weighted Least-Squares

1
min _ly — Azl + \J(2)

@ System Model
» y € RM: Log of CT data
» A € RM*N: System matrix
» 2 € RY: Image estimate



Penalized Weighted Least-Squares

1
min 3 [y — Aeffy +AJ(a)

@ Noise Model
» W = diag {w;}
» w,; are statistical weights
» W is very poorly conditioned



Penalized Weighted Least-Squares

1
min _ly — Azl + \J(2)

@ Signal Model
» Regularizer J(z) : RY — R



Our Contribution

Propose fast, data-driven regularization with adaptive sparsifying
transforms



Signal Models



Signal Models

@ Better model = better reconstruction

@ Data-adative sparse representations: sparse signal models
adapted for a particular signal instance

» Usually patch based



Patch-based Signal Models




Sparse Signal Models

@ Synthesis sparsity
@ Transform sparsity



Synthesis Sparsity

® = = Da, ais sparse

® Dictionary Learning: Given {x;}_,, find D and {a;};_,
» Applied to low-dose and limited-angle CT

» Scales poorly with data size



Transform Sparsity

@ &z =2z +e, zissparse.
@ ¢ captures deviation from sparsity in transform domain
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@ Transform Learning: Given {x]} -, find ® and {zj}le
» Scales more gracefully with data size



Problem Formulation



Regularization with sparsifying transforms

, A
J(x) = Igglz 5 12Ejz — %113 +7llzjllo + a([|®[|F — log det @)
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Regularization with sparsifying transforms

, A
J(x) = Igglz 5 12Ejz — %13 +7llzjllo + a((|®[|F — log det @)
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Regularization with sparsifying transforms

, A
J(x) = Igglz 5 12Ejz — %13 +7llzjllo + a([|®[|F — log det @)
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Reconstruction Problem

1 1
min S |ly — Azl + 2 S[PEjz — 2[5 + Mlzllo
z,®,z; 2 J 2

+ )\oz(||<I>||% — log det @))
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Image Update Transform Update

1 A .
min - [ly—Aallfy+5 Sl B3 mq;n?l@Eﬂ — zjll3 + F(®)
J

Sparse Code Update

min 3| @Bz — 2[5 + 7llzllo
4
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Regularizer Update

@ ® update
1
o1 = argmin Y S| 9Bz — 513 + o (|| @l — log det @)
» 52

@ Closed form solution! [Ravishankar, 2012]

@ Requires three matrix products of size p x N by N x p, and one
SVD of size p x p
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Regularizer Update

@ z; update

St

1
j = argmin o [|®E;z — zl5 + vllzllo
J

@ Closed-form solution using hard thresholding: z;.““ =T, (®E;x)

T,(0) = {0’ o=

a, else
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Image Update

1 A
min 3y — Aalffy + 30 519 Ly — 53
J

@ Weighted least-squares problem in x

— AT THT
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Solution using ADMM [Ramani, 2012]

@ Big Idea: Use variable splitting to untangle A and W
rnxm§||y —ollfy +> §H‘I’Eﬂ? — zll2
J

subject to v = Ax
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Solution using ADMM [Ramani, 2012]

@ Augmented Lagrangian

1 A 1% 1%
L(z,v,m) = §Hy—v||3v+z 5II‘PEjl‘—ZjH%+§IIU—Aw—n||§—§II77II§
j

@ Alternate between

» Minimization over z
» Minimization over v
» Maximization over n
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x-update

@ Solve:

(MATA + Z EJT@T(I)Ej) af = AT (% — P + Z EjT<I>sz
J J
@ Linear unweighted least-squares in z
@ Hessian H = uAT A+ 3", E] ®T ®E; is approximately
shift-invariant

@ Solve using Preconditioned Conjugate-Gradient (PCG) with
circulant preconditioner
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v-update

V= (W 4 uD) TN (Wy + p(Az™H 4 )
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n-update

I
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Overall Algorithm (AST-CT)
1: repeat
2 repeat
3 Update ®
4 zé? — Ty ®FE;x Yy
5: until Halting condition
6 i+ 0, u0 « AxF, 00«0
7 repeat
8 Use PCG to find approximate solution
of Hz' ! = pAT (uf — n®) + X > E]T<I>Tz]i-

9: wt o (W4 ul) ™ (Wy + p(AZH + oY)
10: 77z‘+1 « ni . (ui+1 _ Ajz'ﬂ)

11: 14— 1+1

12 until Halting condition

13: ghtl o gitl

14: until Halting Condidition
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Experiments
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Experiments

@ Low-dose data synthesize from clinical image
@ Total-variation (TV)

> J(x) = [lzllrv

» Apply variable splitting to data fidelity and regularizer
@ Dictionary learning (DL):

> J(z) = minp o, 3,1 Ejx — Daj|3 +vlajllo

» Solve with orthogonal matching pursuit and K-SVD
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Truth TV

A\

DI, AST
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Experiments

D/® a/z Image | Total
Update | Update | Update
FBP 0 0 2.3 2.3
TV-CT 0 0 91.3 91.3
DL-CT 87.5 60.3 85.4 | 233.3
AST-CT 4.4 0.2 88.4 93.0
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Conclusions
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Conclusions

@ Proposed the use of adaptive sparsifying transform regularization
for low-dose CT reconstruction

@ Performs as well as synthesis dictionary learning regularization at
the speed of TV regularization
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Thanks!

40



