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ABSTRACT

Model based iterative reconstruction algorithms are capable of reconstructing high-quality images from low-
dose CT measurements. The performance of these algorithms is dependent on the ability of a signal model to
characterize signals of interest. Recent work has shown the promise of signal models that are learned directly
from data. We propose a new method for low-dose tomographic reconstruction by combining adaptive sparsifying
transform regularization within a statistically weighted constrained optimization problem. The new formulation
removes the need to tune a regularization parameter. We propose an algorithm to solve this optimization
problem, based on the Alternating Direction Method of Multipliers and FISTA proximal gradient algorithm.
Numerical experiments on the FORBILD head phantom illustrate the utility of the new formulation and show
that adaptive sparsifying transform regularization outperforms competing dictionary learning methods at speeds
rivaling total-variation regularization.
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1. INTRODUCTION

A major requirement in computed tomography(CT) is the reduction of harmful x-ray dose while maintaining
the quality of reconstructed images. Recently, the Model-based Iterative Reconstruction (MBIR) framework has
proven to be effective in solving a variety of inverse problems, including low-dose x-ray CT1.2 The MBIR approach
include three main ingredients: a forward model that describes how measurements are formed, a noise model
that describes how measurements are corrupted, and a signal model that captures prior information about the
signals we wish to recover. These ingredients are then tied together into an objective function that is minimized
using an iterative algorithm.

A popular approach to low-dose CT reconstruction is to combine the noise and system model together into
a penalized weighted least-squares (PWLS) problem:

minimize
x

1

2
‖y −Ax‖2W + λJ(x). (1)

Here, the data vector y ∈ R
M contains the log of the received photon counts, x ∈ R

N is an estimate of
the image to reconstruct, and the system matrix A models the forward projection operation. The diagonal
matrix W consists of statistical weights wi. The quantity J(x) : RN → R is a regularization functional that
promotes images that match our prescribed signal model. Common choices for this regularizer include the total-
variation (TV) seminorm, the ℓ1 norm of the wavelet coefficients of the image, or the qGGMRF regularization
functional. A trait shared by these regularizers is that they promote images that are sparse under a particular
representation; for example, TV promotes images that are sparse under a finite-differencing operator; such images
are piecewise-constant. Although these regularizers have been shown to be effective for both low-dose and limited
data tomography, regularizers that promote piecewise constant images can replace complex texture by patchy,
uniform regions. More sophisticated regularizers, such as the combination of ℓ1 and shearlets, have shown to
preserve complex texture at the cost of poorer performance on uniform regions.3



Recent years have shown the promise of sparse representations that are directly adapted to a class of signals
rather than analytically designed. A popular approach is to assume that small, overlapping image patches can
be formed by the product of a matrix called a dictionary, and a vector called a sparse code. This is known as the
synthesis sparsity model, and many algorithms have been proposed to find such a dictionary and sparse codes,
given a set of training data. These algorithms tend to alternate between updating the dictionary and updating
the sparse codes. Regularization based on the synthesis sparsity model has been shown to be effective for both
low-dose and limited-angle CT.4–6 Unfortunately, the sparse coding update step is NP-Hard and algorithms to
approximate a solution generally scale poorly with data size. As a result, dictionary-learning based regularization
can dramatically increase the computational cost of the already challenging problem of CT reconstruction.

An alternative sparse signal model is to assume that image patches become sparse when acted on by a linear
operator called an analysis operator. Recently, there has been an increase in the development of algorithms
that use the analysis sparsity model. Many of these algorithms use the analysis model, which suggests that a
signal x should be exactly sparse when acted on by a linear transform Ω. When x is corrupted by noise the
model can be extended to the noisy analysis model by taking x = q + e, where e is a (small) error in the signal
domain, and Ωq = z is sparse.7 Unfortunately, as in the synthesis sparsity model, algorithms to learn Ω and
find the corresponding sparse codes z are also NP-Hard and algorithms to find an approximate solution are
computationally expensive.

Recently, Ravishankar and Bresler have proposed several algorithms to learn signal representations based on
the transform sparsity model,8,9.10 In this framework, data is assumed to satisfy Wx = z + η, where z is sparse
and η is small. The signal x need only be approximately sparsified when acted on by the matrix W , which
is called a sparsifying transform. Transform sparsity, named as such owing to its to similarity with transform
coding schemes,11 can be viewed as an alternative approximation to the co-sparse analysis model. The primary
distinction between the noisy analysis and transform signal models is that the latter allows for deviation from
exact sparsity in the transform, rather than the signal, domain. This characteristic allows for the design of efficient
algorithms to learn sparsifying transforms from data. Regularization with adaptive sparsifying transforms has
been shown to provide state-of-the-art performance in low-dose CT12 and MRI13 imaging applications.

Regardless of the choice of regularizer, it can be difficult to set the PWLS regularization parameter λ, which
controls the bias-variance tradeoff induced by the regularizer. The MAP-optimal choice of λ requires knowledge
of the value of J(x) evaluated on the true image, information that we do not have access to. Instead, the usual
approach is to tune λ to provide the best empirical reconstruction. This generally involves performing recon-
structions for many values of λ followed by selecting the best reconstruction. Such an approach is unacceptable
for practical CT reconstruction, where even a single reconstruction requires significant time and computational
resources. The difficulty of parameter selection has motivated several automatic parameter tuning strategies for
linear inverse problems; for example, those based on Stien’s Unbiased Risk Estimator.14

Niu & Zhu15 proposed to eliminate the problem of parameter selection for CT reconstruction by replacing
the PWLS problem (1) with the constrained problem

minimize
x

J(x) s. t. ‖y −Ax‖22 ≤ ε, (2)

where the tolerance level ε is chosen using the Poisson statistical noise model. The constrained problem is trans-
formed into an unconstrained problem through the use of a log-barrier barrier function, and the unconstrained
minimization problem is solved using gradient projection with a Barzilai-Borwein step selection procedure. This
constrained problem requires that the overall deviation between y and the reprojection Ax of the reconstructed
image be less than the noise variance. However, this constraint fails to account for the variance on a per-projection
basis, which is crucial in low-dose CT as the variance of each detector reading varies greatly depending on the
path travelled by the x-ray.

In Section 2, we develop a we develop a modified version of the constrained formulation (2) that incorporates
per-projection variance information through a weighted norm. The new constrained formulation is combined with
adaptive sparsifying transform regularization. In Section 3, we propose to solve this optimization problem using
the Split Augmented Lagrangian Shrinkage Algorithm (SALSA)16 in combination with the FISTA proximal
gradient algorithm. Simulations in Section 4 show that the inclusion of the statistical weighting improves



reconstruction from low-dose measurements. We show that adaptive sparsifying transform regularization does
not suffer from the patchy artifacts of total-variation regularization, and facilitates reconstruction while enable
reconstruction much faster than with dictionary learning regularization.

2. PROBLEM FORMULATION

2.1 Adaptive Sparsifying Transform Regularization

Adaptive sparsifying transform regularization is based on the principle that we can find a matrix, Φ ∈ R
k×k,

that will nearly sparsify patches from the image x. We define a matrix Ej ∈ R
k×N to have the form Ej =

(Ik − k−11T1)Rj , where 1 ∈ R
k is a vector of all ones and Rj ∈ R

k×N is a matrix that extracts and vectorizes

the
√
k×
√
k patch whose top-leftmost pixel is the j-th index of the vectorized image. The matrix (Ik−k−11T1)

removes the mean of the image patch, which is necessary to ensure that patches that differ by a constant offset
will be sparsified in the same way.

The transform model stipulates that ΦEjx = zj + ej , where the vector zj ∈ R
k is sparse and the deviation

from sparsity, ej ∈ R
k, is small. We will promote sparsity by penalizing the ℓ1 norm of the transform coefficients

zj . Given an image x, we will search for both Φ and the zj by solving an optimization problem. Viewed in the
MBR framework, this corresponds to a regularizer that is itself the solution of a minimization problem:

J(x) , min
z,Φ

∑

j

‖ΦEjx− zj‖22 + γ‖zj‖1 + α
(

‖Φ‖2F − log detΦ
)

(3)

The first term penalizes the sparsification error of the mean-removed patches of x, while the second term promotes
sparsity in zj . The final two terms promote well-conditioned Φ by ensuring that it is both well-scaled and non-
singular.

2.2 Constrained Optimization Problem

Adopting the usual Poisson model for transmission CT, we model the number of photons received at the detector,
gk, corresponding to the k-th projection [Ax]k, as a Poisson random variable with gk ∼ Poi

{

I0e
−[Ax]k

}

. The
photon flux I0 represents the number of photons received at the k-th detector when no object is present in the
x-ray path. We assume this quantity is known and constant for all projections. For simplicity, we neglect both
electronic readout noise and background events.

We gather the received photon counts into a random vector g ∈ R
M . Adopting the usual assumption that

the gk are statistically independent, a quadratic approximation to the negative-log likelihood L(g|x) yields the
familiar weighted-norm term

L(g|x) ≈ −1

2
‖y −Ax‖2W , (4)

where W is a diagonal matrix with wk = gk, and yk = − log (gk/I0).

This oft-used quadratic approximation to L(g|x) implies that each yk is well-modelled as a Gaussian random
variable with mean [Ax]k and variance 1/wk. Thus, the quantity

√
wk · (yk− [Ax]k) is a standard normal random

variable and the sum
∑M

k=1 wk (yk − [Ax]k)
2
are distributed according to the central χ2

M distribution. It follows
that the mean and variance of ‖y − Ax‖2W are M and 2M , respectively. This motivates the new constrained
problem

minimize
x

J(x) s. t. ‖y −Ax‖2W ≤ ε, (5)

where ε = c · (M +2
√
2M). The scalar c is a user-tunable parameter to account for measurement errors that are

not captured by the Poisson noise model, such as discretization errors, scatter, or beam hardening effects. For
the remainder of this work we will assume c = 1. In this case, if the measurement model holds exactly and x
equals to the true image, applying the Central Limit Theorem for large M yields that the constraint in (5) will
be satisfied with probability of 98%.

The constraint in (5) improves on (2) by incorporating our knowledge of the variance of each projection.
Further, when J(x) is a convex regularizer, there exists a particular parameter λ for which the unconstrained
PWLS problem (1) and the constrained formulation (5) are equivalent.17



We will combine the AST regularizer (3) with the constrained formulation in (5) to form our reconstruction
problem

minimize
x







min
z,Φ

∑

j

‖ΦEjx− zj‖22 + γ‖zj‖1 + α
(

‖Φ‖2F − log detΦ
)







s. t. ‖y −Ax‖2W ≤ ε.

(P1)

3. ALGORITHM

We solve (P1) using a block alternating minimization scheme. We alternate between updating the regularizer
by minimizing over the zj and Φ, followed by reconstructing the image by minimizing with respect to x.

3.1 Regularizer Update

We update the regularizer by minimizing over Φ and z in an alternating fashion. With x and z fixed, the
transform Φ is updated by solving

Φk+1 = argmin
Φ

∑

j

‖ΦEjx− zj‖22 + α
(

‖Φ‖2F − log detΦ
)

, (6)

which can be solved in closed-form.9 The closed-form solution is requires three products of k × N and N × k
matrices, as well as one Cholesky decomposition and one SVD of matrices of size k × k.

With Φ and x fixed, each zj is updated by solving

zk+1
j = argmin

zj

‖ΦEjx− zj‖22 + γ‖zj‖1. (7)

This minimization problem can be solve in closed-form by soft thresholding each component of ΦEjx at level γ.
For a scalar a, soft thresholding at level λ is defined as

Tλ(a) =
{

0, |a| ≤ λ
(

1− λ
|a|

)

a, otherwise.
(8)

To ensure that Φ is a good sparsifying transform for the current image, we alternate between updating all zj
and Φ a few times before proceeding.

3.2 Image Update

With the regularizer updated we can now move to the image reconstruction step. Fixing Φ and z, we form the
new image estimate by solving

xk+1 = argmin
x

∑

j

‖ΦEjx− zj‖22 s. t. ‖y −Ax‖2W ≤ ε. (9)

We propose to solve this constrained minimization problem using the SALSA algorithm. SALSA involves trans-
forming the constrained minimization problem (9) into an equivalent unconstrained problem, then attacking the
unconstrained problem using the Alternating Direction Method of Multipliers (ADMM). We do this by first
defining the indicator function for our constraint set C =

{

v ∈ R
M : ‖y − v‖2W ≤ ε

}

as

IC(v) ,

{

0, ‖y − v‖2W ≤ ε

∞, else,
(10)

and rewrite the x-update step (9) in the unconstrained form

xk+1 = argmin
x

∑

j

‖ΦEjx− zj‖22 + IC(Ax). (11)



We now use the ADMM variable splitting method to break the minimization problem (11) into several smaller,
more manageable optimization problems. We accomplish this by introducing writing a problem equivalent to
(11),

minimize
x

∑

j

‖ΦEjx− zj‖22 + IC(v) s. t. v = Ax. (12)

We can then write the augmented Lagrangian function for this problem as

L(x, v, η) =
∑

j

‖ΦEjx− zj‖22 + IC(v) +
µ

2
‖v −Ax− η‖22 −

µ

2
‖η‖22, (13)

where the vector η ∈ R
M can be viewed as a scaled version of the Lagrange multiplier corresponding to the

constraint v = Ax, and the scalar µ > 0 is a parameter that affects the rate of convergence, but not the overall
solution, to the optimization problem.18

We must now solve a saddle point problem involving L(x, v, η), alternating between minimizing over x and v
followed by a gradient step to maximize with respect to η. At the k-th iteration, we must solve

xk+1 = argmin
x

∑

j

‖ΦEjx− zj‖22 +
µ

2
‖vk − ηk −Ax‖22, (14)

vk+1 = argmin
v

IC(v) +
µ

2
‖v − (ηk +Axk+1)‖22, (15)

ηk+1 = ηk − vk+1 +Axk+1. (16)

We will examine the x and v subproblems in detail.

The x-update step (14) is a linear least-squares problem with solution given by

xk+1 =



µATA+
∑

j

ET
j Φ

TΦEj





−1

µAT (vk − ηk) +
∑

j

ET
j Φ

T zj



 . (17)

As the Hessian H , µATA+
∑

j E
T
j Φ

TΦEj is of size M×M , direct inversion is infeasible and iterative methods,
such as the conjugate gradient algorithm, must be used. The convergence rate of conjugate gradient can be greatly
improved through the use of preconditioning. A popular choice is to take advantage of the (approximate) shift-
invariance in ATA by using a circulant preconditioner.19 Such preconditioners can be efficiently implemented
using the FFT algorithm and considerably accelerate convergence. If Ej extracts overlapping patches that wrap-
around the image boundary, the term

∑

j EjΦ
TΦEj corresponds to a circularly shift-invariant operator and thus

H−1 can be well-approximated using circulant preconditioners.

The v-update step can be viewed as the proximal operator of IC evaluated at Axk+1 + ηk, or equivalently as
the projection of the point Axk+1 + ηk onto the ellipsoidal constraint set C. The problem of projecting a point
onto an ellipse is as a quadratic optimization problem, and there have been several algorithms proposed for its
solution. We will use a change of variables to reformulate the projection into a quadratic optimization problem
with an unweighted ℓ2-norm constraint, and then use the FISTA accelerated proximal gradient algorithm to
solve the reformulated problem.

Let IC̃ be the indicator function for the unweighted ℓ2 norm ball of radius
√
ε, defined as

IC̃(x) =

{

0, ‖x‖22 ≤ ε

∞, else.
(18)

This new indicator function is related to IC through the definition of the weighted norm, with IC(v) = IC̃(W
1
2 (v−

y)). Here, the diagonal entries of W
1
2 are given by

√
wii, which is well-defined as the photon counts are non-

negative. We can now pose the v-update problem as the solution of

argmin
v

IC̃(W
1
2 (v − y)) +

µ

2
‖v − (ηk +Axk+1)‖22. (19)



It is the placement of W
1
2 within the indicator function that prohibits a closed-form solution to this proximity

mapping. We can untangle these terms by can exploiting the invertibility of W
1
2 . We define the change of

variables ζ = W
1
2 (v − y) and rewrite the problem as

argmin
ζ

IC̃(ζ) +
µ

2
‖W− 1

2 ζ − (ηk +Axk+1 − y)‖22. (20)

This is no longer in the form of a proximal mapping, but is instead the sum of a convex, lower semi-continuous
indicator function and a quadratic term. Problems of this form can be efficiently solved using proximal gradient
methods. We make use of the FISTA algorithm,20 chosen for its ease of implementation and rapid convergence.
The complete algorithm for solving (15) is listed as Algorithm 1. The dominant computations in the v-update

step are multiplication by W− 1
2 and the evaluation of the ℓ2 norm. The required multiplication is inexpensive

operation as W is a diagonal matrix. As FISTA is used to solve a subproblem of the overall optimization problem,
we do not require that FISTA reach convergence, and instead use a fixed number of 15 iterations.

Algorithm 1 FISTA for v-update

1: u0 ←W
1
2 (vk − y)

2: t0 ← 1
3: L← 1/‖W‖∞
4: repeat

5: ζ̃i ← ui − µ
L

(

W−1ui −W− 1
2 (ηk +Axk+1 − y)

)

6: ζi ← √ε · ζ̃i/‖ζ̃i‖2
7: ti+1 ← (1 +

√

1 + 4(ti)2)/2

8: ui+1 ← ζi + ti−1
ti+1 (ζ

i − ζi−1)
9: i← i+ 1

10: until Halting condition
11: vk+1 ←W− 1

2 ζi + y

3.3 Overall Algorithm and Parameter Selection

The overall algorithm, which we call C-AST-CT, is listed as Algorithm 2. The algorithm is initialized using an
FBP reconstruction of the noisy measurements.

We have three main parameters that must be chosen. The parameter α is set empirically to a value that
results in well conditioned Φ. As the algorithm is somewhat robust to the choice of this parameter we can search
for α by learning transforms on the FBP reconstructed image. The sparsity parameter γ is more difficult to
select. The parameter should be large enough to reject noise, which is not sparsified well, but low enough to
preserve low-contrast features in the image. Unlike the synthesis dictionary learning setting, there is no direct
link between noise rejection and sparsity level unless Φ is an orthonormal transform. As such, γ must be tuned
empirically for good performance.

Finally, we must select the ADMM parameter µ. We follow the suggestion of Goldstein and Osher21 and select
µ to ensure that the linear system in (17) is well conditioned. As we cannot efficiently estimate the conditioning
of H, we instead minimize the condition number of the circulant approximation to H−1. This is a simple scalar
minimization problem with low computational cost.

If J(x) is a closed, proper, and convex function, Algorithm 2 is guaranteed to converge so long as the matrix

[W
1
2 , A]T has full column rank.22 The latter condition clearly holds as W

1
2 is invertible. Although our regularizer

as defined in (3) is nonconvex, it becomes convex for fixed zj and Φ. Empirically, both Φ and the zj change
little after roughly 10 iterations of Algorithm 2. We use this property to motivate a heuristic stopping criterion:
once a suitable zj and Φ are found, we cease updating them and run the SALSA image update steps until the
algorithm has been determined to converge.



Algorithm 2 C-AST-CT

INPUT: Initial transform Φ, observed data y
OUTPUT: Reconstructed image x
1: x0 ← FBP(y)
2: z0j ← Tγ

(

ΦEjx
0
)

∀j
3: repeat

4: repeat

5: Update Φ by (6)
6: zkj ← Tγ (ΦEjx) ∀j
7: until Halting condition
8: i← 0
9: u0 ← Axk

10: v0 ← ~0
11: repeat

12: Use preconditioned CG to find approximate solution
of Hx̃i+1 = µAT (vi − ηi) +

∑

j E
T
j Φ

T zij
13: Use Algorithm 1 to solve

vi+1 ← argminv IC(v) +
µ
2 ‖v − (Axi+1 + ηi)‖22

14: ηi+1 ← ηi − vi+1 +Ax̃i+1

15: i← i+ 1
16: until Halting condition
17: xk+1 ← x̃i+1

18: until Halting condition

4. EXPERIMENTS

The algorithms were implemented using NumPy 1.8 and SciPy 0.13 on a computer containing an Intel i5-2520m
processor with 6GB of RAM. The projection Ax and back projection AT y were performed using a multithreaded
C implementation of the distance-driven projector and backprojector, which ensures a matched projector and
backprojector pair.23 The system matrix A simulates the GE Lightspeed geometry,24 with 888 detector bins
and 984 projections evenly spaced between 0 and 360◦. All simulations assume a 80 keV monoenergetic source
and the linear attenuation coefficient of water is set to 1.83 mm−1.

Our error metric is the root mean square error (RMSE), defined for an image with N pixels as RMSE =
√

∑N
k=1(xk − x̄k)2/N , where xk is pixel of the reconstructed image and x̄ is the ground truth image.

We compare the performance of regularization with adaptive sparsifying transforms against FBP reconstruc-
tion, as well as two constrained iterative reconstruction schemes. The first, which we refer to as C-TV-CT,
takes J(x) = ‖x‖TV . We use ADMM to handle this non-differentiable regularizer in the same manner as in
the unconstrained case.25 The second algorithm, which we call C-DL-CT, combines our constrained formulation
with dictionary learning regularizer. This is accomplished by setting

J(x) =
∑

j

1

2
‖Ejx−Daj‖22 + γ‖aj‖0 (21)

and suitably modifying Algorithm (2). The update for aj becomes a synthesis sparse coding problem, which we
solve using the efficient SPAMS toolbox∗. The dictionary D is updated using the K-SVD algorithm.26 We use
the same constraint set and preconditioning strategy for C-AST-CT, C-DL-CT, and C-TV-CT, so that the only
difference in the algorithms comes from the choice of regularizer.

We evaluate the performance of the algorithms on 350 × 350 pixel slice of the FORBILD head phantom,
occupying a FOV 25.6 cm in diameter. Projection data Pθ(t) was formed by sampling analytic line integrals27

∗Available: http://spams-devel.gforge.inria.fr



Table 1. RMSE of low-dose phantom reconstructions. (units: HU)

FBP C-AST-CT C-AST-CT C-DL-CT C-TV-CT
ℓ2 norm Weighted norm Weighted norm Weighted norm

81 78 71 72 68

through the phantom at 0.128 mm intervals. To account for the finite width of the x-ray, we approximate strip
integrals by combining 8 consecutive samples according to

P̂θ[t] = − log

(

1

8

3
∑

i=−4

exp−Pθ[t+ i+ δ/2]

)

. (22)

The resulting projections P̂θ[t] correspond to 1.0239 mm detectors. The simulated photon counts are generated
form the strip integrals using the Poisson model with

yθ[t] = − log

(

Poi I0 exp (−P̂θ[t])

I0

)

. (23)

The data vector is then formed by collecting all photon counts into the vector y ∈ R
M .

We form ’clinical dose’ data by setting I0 = 3.5 × 106. This results in a noise level of roughly 3.5 HU in a
Hamming-weighted FBP reconstruction, where the noise level is estimated over a flat region of the phantom. We
form low-dose data with I0 = 1.75× 106, corresponding to dose reduction by a factor of 2. A discretized version
of the phantom is taken to be x̄.

For C-AST-CT, we update alternate between updating the zj and Φ five times before moving to the image
update step. We then perform 30 SALSA iterations. This process is repeated 10 times, after which we fix Φ and
zj and perform 150 SALSA update iterations to form the final reconstructed image. We use the same strategy
for C-DL-CT. For C-TV-CT, we perform 500 SALSA iterations. In all algorithms, the v-update step is solved
using a fixed number of 15 FISTA iterations. We initialize Φ in C-AST-CT using a separable approximation
to the finite differencing operator. In C-DL-CT, the initial dictionary is a 64 × 121 overcomplete DCT matrix.
Both algorithms use 8× 8 image patches.

Figure 1 clearly illustrates the benefit of the per-projection weighting in (5) over the unweighted constraint in
(2). Both C-AST-CT reconstructions were performed using the same number of iterations, but the reconstruction
performed with a weighted norm constraint shows significantly less noise throughout the image.

Figure 2 shows reconstructed images using each of the regularizers and the weighted norm constraint. As
expected, TV regularization performs well on this piecewise-constant phantom. However, there are noticeably
patchy regions throughout the image. The images reconstructed using C-AST-CT and C-DL-CT regularization
exhibit no patchy regions, but there is a noticeable smoothing effect. This may be remedied by more careful
tuning of the sparsity parameter. The DL reconstruction has strong streaking artifacts near the ear. It is possible
that the learning algorithm characterized these streaks as features to be learned, rather than rejected. Although
present, the streaking in the C-AST-CT reconstruction is much less pronounced.

Table 2 illustrates the average amount of time needed to complete one outer-loop iteration of each algorithm.
For C-DL-CT, the Dictionary Update time corresponds to the amount of time needed for 5 K-SVD iterations.
For C-AST-CT, Φ Update refers to the amount of time needed for 5 updates of the sparsifying transforms. For
all algorithms, Image Update is the amount of time needed for 30 SALSA image update iterations. These results
show that C-AST-CT performs at nearly the same speed as C-TV-CT, while C-DL-CT increases the computation
time by roughly 30%. This computational advantage will be further amplified as the image size grows.

5. CONCLUSIONS

Model-based iterative reconstruction methods combine physical and statistical models of image acquisition with
detailed signal models to achieve state of the art results in low-dose CT imaging. The performance of these



Table 2. Computation time for one outer iteration for each of the algorithms. Units: seconds

D/Φ a/z Image Total
Update Update Update

C-TV-CT 0 0 257.7 257.7
C-DL-CT 54.5 20.3 249.1 323.9
C-AST-CT 2.1 0.1 254.4 256.6

30

45

60

75

30

45

60

75

Figure 1. From left to right: discretized phantom, FBP reconstruction, C-AST-CT reconstruction with weighted norm,
C-AST-CT reconstruction with ℓ2 norm. All units in HU.

algorithms depend on the signal model and the choice of regularization parameter. We have proposed the use of
regularization based on adaptive sparsifying transforms, in conjunction with an constrained optimization problem
that removes the need to tune the regularization parameter while tightly incorporating the statistical signal
model. Although we focused on the use of adaptive sparsifying transform regularization, the new constrained
formulation and optimization scheme can be adapted for any regularizer.
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